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The genetic architecture of the human 
hypothalamus and its involvement in 
neuropsychiatric behaviours and disorders

Despite its crucial role in the regulation of vital metabolic and neurological 
functions, the genetic architecture of the hypothalamus remains unknown. 
Here we conducted multivariate genome-wide association studies (GWAS) 
using hypothalamic imaging data from 32,956 individuals to uncover the 
genetic underpinnings of the hypothalamus and its involvement i n n eu ro-
ps yc hi atric traits. There were 23 significant loci associated with the whole 
hypothalamus and its subunits, with functional enrichment for genes 
involved in intracellular trafficking systems and metabolic processes of 
steroid-related compounds. The hypothalamus exhibited substantial genetic 
associations with limbic system structures and n eu ro ps yc hi atric traits 
including chronotype, risky behaviour, cognition, satiety and sympathetic–
parasympathetic activity. The strongest signal in the primary GWAS, the 
ADAMTS8 locus, was replicated in three independent datasets (N = 1,685–4,321)  
and was strengthened after meta-analysis. Exome-wide association 
analyses added evidence to the association for ADAMTS8, and Mendelian 
randomization showed lower ADAMTS8 expression with larger hypothalamic 
volumes. The current study advances our understanding of complex 
structure–function relationships of the hypothalamus and provides insights 
into the molecular mechanisms that underlie hypothalamic formation.

The hypothalamus plays a crucial role in the regulation of vital bodily 
functions despite being a small portion of the overall brain. Communi-
cating with other brain regions, the hypothalamus regulates multiple 
metabolic processes and controls activities of the autonomic nervous 
system, including circadian rhythms, appetite, blood pressure and 
heart rate1. Furthermore, integration of the hypothalamus with the lim-
bic system subserves cognition, emotion and social functions2,3. There 
is also a growing appreciation of contributions by the hypothalamus 
to the pathogenesis of various psychiatric and neurological disorders 
such as schizophrenia (SCZ)4, depression5, dementias6 and Parkinson’s 
disease (PD)7. Despite their importance in human health and disease, 
the genetics of the hypothalamus remains markedly understudied.

Owing to its enhanced soft tissue contrast in comparison to com-
puted tomography and ultrasound imaging, magnetic resonance 

imaging (MRI) is more widely adopted as a non-invasive examination 
tool for studying the human brain in vivo, for example, cortical and 
subcortical structural changes in neuropsychiatric diseases8,9 and 
genetic influences on brain structure variation10,11. Nevertheless, imag-
ing studies of the hypothalamus are scarce, and no GWAS of common 
variants or exome-wide association studies of rare variants have been 
conducted to reveal its genetic architecture. Such scarcity partially 
stems from the lack of automated segmentation tools of hypothalamic 
subunits, as previous studies were primarily based on segmentations 
derived from manual delineations12–14. These are time-consuming and 
labour-intensive procedures that can be difficult to reproduce and 
severely prone to inter-rater and intra-rater variabilities. Recently, 
an effective automated tool for segmenting the hypothalamus was 
developed using a deep convolutional neural network15. The technique 
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statistical test (MOSTest) method16. The analysis was adjusted for 
age, age squared, sex, scanning site, intracranial volume and the first 
ten genetic principal components. This method examined each SNP  
separately for its associations with multiple hypothalamic meas-
ures by simultaneously modelling the distributed nature of genetic 
influences across the hypothalamus (Methods). The functional 
mapping and annotation (FUMA) of GWAS platform17 was used to 
clump mvGWAS results based on linkage disequilibrium (LD) and to 
identify lead SNPs at each associated locus. As a result, there were 23  
unique genomic loci (ranging from 20.4 kb to 1405.4 kb) at the 5 × 10–8 
significance level with distributed associations across the hypothala-
mus and tagged by 26 lead SNPs (Figs. 1 and 2a and Supplementary 
Tables 2 and 3). The top Manhattan plot depicted in Fig. 1 displays 
the corresponding multivariate statistics, which emphasized the 
polygenic nature of the hypothalamus. The bottom Manhattan plot 
in Fig. 1 illustrates statistics resulting from univariate GWAS analysis 
of distinct regions in the hypothalamus where the increased univari-
ate statistics of different subregions for certain loci (Supplementary  
Table 3) supported a distributed genetic architecture across the 
hypothalamus18. Thirteen out of 23 lead SNPs were also impli-
cated in a univariate GWAS (Supplementary Table 3). This result  
indicates that the MOSTest had an advantage in increasing statisti-
cal power by leveraging the distributed effects across hypothalamic 
subregions compared with the univariate GWAS16. For example,  
the tagging SNP rs3740888 of the 19th loci was also significantly asso-
ciated with the whole, anterior superior, superior tuberal and inferior 
tuberal hypothalamus (β = 0.0450–0.0942, Punivariate = 3.68 × 10–32–
1.83 × 10–8).

LD-score regression (LDSC) was used to evaluate inflation from 
confounding, and all LDSC intercepts of hypothalamic measures were 
close to one (range of 0.9977–1.0257), which indicated a relatively 
well-controlled population stratification (Supplementary Table 4). 
The sensitivity analysis, including additional covariates (that is, batch 
and array), found almost the same genomic loci (Supplementary Fig. 2a 
and Supplementary Tables 5 and 6). To focus on hypothalamus-specific 
associations, the model was further adjusted for the volumes of frontal, 
parietal, temporal and occipital cortices, and the results also found 
almost the same loci (Supplementary Fig. 2b and Supplementary  
Tables 7 and 8). These results indicate the robustness of the original 
mvGWAS results.

enables rapid and highly accurate volume estimation of the entire 
hypothalamus and its subregions from T1-weighted MRI scans. It is 
scalable to large datasets, which facilitates the detection of the genetic 
underpinnings of this structure.

In the current study, leveraging large-scale imaging and genetics 
resources from the UK Biobank (UKB), we aimed to increase our knowl-
edge of the genetic architecture of the hypothalamus. First, one of the 
largest dataset of hypothalamic imaging samples so far was obtained 
using the automated segmentation tool. Second, a GWAS of the hypo-
thalamus was conducted to identify common variants and genetic loci 
linked to the structure with replication in three other independent data-
sets. Considering that variants probably have distributed effects across 
hypothalamic regions, we used a multivariable approach, which pre-
vents the need for a multiple-comparison correction or data-reduction 
strategies. Functional annotation and genetic correlation analyses were 
subsequently performed to investigate the biological significance 
of GWAS findings. Third, a rare variant association study (RVAS) was 
conducted to explore the effect of rare variants on the hypothalamus. 
Finally, Mendelian randomization (MR) was carried out to probe poten-
tial genes that regulate hypothalamic structures. A schematic overview 
of the study design is illustrated in Supplementary Fig. 1.

Results
Hypothalamus segmentation
A total of 32,956 white British participants from the UKB were included 
in the discovery GWAS after quality control of imaging and genotyping 
data. The mean (s.d.) age of the sample dataset was 64.3 (7.5) years, and 
52.7% were female. Using T1-weighted MRI scans, the hypothalamic 
structures were delineated using the automated segmentation tool on 
the basis of deep convolutional neural networks15 (Fig. 1). Volumes were 
estimated for the whole hypothalamus (mean (s.d.) of 826.62 (78.85) 
mm3) and its five subregions, including the anterior superior (42.0 
(8.32) mm3), the anterior inferior (31.6 (8.3) mm3), the superior tuberal 
(228.2 (25.62) mm3), the inferior tuberal (281.4 (31.15) mm3) and the 
posterior (243.5 (30.89) mm3) hypothalamus (Supplementary Table 1).

Multivariate GWAS revealed 23 loci associated with the 
hypothalamus
We performed a multivariate GWAS (mvGWAS) for 8,448,580 single 
nucleotide polymorphisms (SNPs) using the multivariate omnibus 
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Fig. 1 | The multivariate framework discovered 23 independent loci 
significantly associated with the hypothalamus. Left, segmentation of the 
hypothalamus. The hypothalamus is divided into the following five subregions: 
anterior superior (a-sHyp), anterior inferior (a-iHyp), superior tuberal (supTub), 
inferior tuberal (infTub) and posterior (posHyp). Top right, Manhattan plot 
illustrating the –log10(P) statistic from the mvGWAS based on the MOSTest 

method. Bottom right, Manhattan plot depicting the –log10(P) statistics from 
univariate linear-regression-based GWAS of the whole hypothalamus and 
single subregions (one colour per region, P values are two-tailed), supporting 
a distributed genetic architecture across the hypothalamus. s, superior; p, 
posterior; l, left; i, inferior; a, anterior; r, right.
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Gene mapping and functional annotation
All the candidate SNPs (n = 6,808) that were defined as the SNPs in 
LD (r2 ≥ 0.6) with any one of the independent significant SNPs in the 
genetic loci were functionally annotated using the FUMA platform17 
(Supplementary Table 9). Most of these SNPs were intronic (45.1%) or 
intergenic (26%) and 1.3% were exonic (Fig. 2b). A small proportion of 
SNPs (6.9%) were in RegulomeDB category 1–2 (Fig. 2c), which implied 
that they have potential regulatory function. The majority (85%) had 
minimum chromatin states of 1–7 (Fig. 2d), which indicated their 
location in open chromatin regions18. We used positional, expression 
quantitative trait loci (eQTL) and chromatin-interaction mappings 
to map candidate SNPs to genes19 (Supplementary Table 10). We also 
performed gene-based analyses by applying the multi-marker analysis 
of genomic annotation (MAGMA) method20 and found 38 unique genes 
(Supplementary Fig. 3 and Supplementary Table 11). These 4 methods 
together identified 297 unique genes, for which 27 genes were mutually 
implicated by all 4 methods. The robustness of the 27 genes indicated 
their essential roles in hypothalamus genetics.

The strongest GWAS hit was mapped to ADAMTS8 (Fig. 2f), which 
is important for anti-angiogenesis and blood pressure in vivo21. Nine 
genes were mapped from the locus with the second strongest GWAS 
signals, including CRHR1, SPPL2C, ARL17B, MAPT, STH, WNT3, KANSL1, 
PLEKHM1 and ARHGAP27. All these genes had high expression levels in 
the brain, were related to intracellular trafficking and showed relevance 
to neuropsychiatric functions or disorders to different extents22–24. The 
search tool for the retrieval of interacting genes or proteins (STRING) 
database discovered 36 known or putative pairwise interactions between 
the proteins encoded by the 27 genes (P < 1 × 10–16; Supplementary Fig. 4  
and Supplementary Table 12) compared with 3 interactions expected 
for a random set of proteins of the same size from the entire proteome. 

Gene set enrichment analysis found that many of the significant gene sets 
reflected processes related to biosynthesis and metabolism of multiple 
substances, such as steroids, lipids, cholesterol, organic hydroxy com-
pound and other small molecular compounds (PBonferonni = 5.66 × 10–4–
3.24 × 10–2), organic response to stimuli (PBonferonni =3.24 × 10–2–4.91 × 10–2) 
and cellular immunity (PBonferonni =3.66 × 10–5–3.57 × 10–2) (Supplementary 
Table 13). These findings support the validity of our GWAS results and 
demonstrate that the genes were at least partially biologically con-
nected, as random noise would not result in such functional clustering.

Close genetic correlations with structures of the limbic system
The genome-based restricted maximum likelihood (GREML) method 
in genome-wide complex trait analysis (GCTA) software was used to 
estimate the SNP-based heritability (h2) for the whole hypothalamus 
and each subregion. Significant heritabilities (false discovery rate 
(FDR)-corrected P < 0.05) were observed for all the hypothalamic 
volumes, ranging from 10% for the anterior inferior hypothalamus 
to 30% for the posterior hypothalamus (Fig. 3a). Heritability was also 
estimated using LDSC, which showed similar patterns despite lower 
h2 estimations (Supplementary Fig. 5 and Supplementary Table 14).

Significant and strong correlations were found between each pair 
of hypothalamic regions by both LDSC (rg = 0.16–0.82, PFDR = 3.94 × 10–154 
–4.98 × 10–2; Fig. 3a) and GCTA–GREML (rg = 0.84–0.99, all 
PFDR < 2.23 × 10–308) methods (Supplementary Table 15). The results 
were consistent with the strong phenotypic associations between 
regions (rg = 0.16–0.83, PFDR = < 2.23 × 10–308–1.10 × 10–307; Fig. 3a and 
Supplementary Table 15) and indicated a distributed genetic architec-
ture across the hypothalamus.

We next performed genetic correlation analysis among 6 hypotha-
lamic measures and 101 regional brain volumes and observed significant 
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Fig. 2 | Functional annotation and gene mapping of the 23 loci associated with 
the hypothalamus. a, Overview of the sizes of genomic risk loci and the number 
of variants. b, Distribution of functional consequences of SNPs in significant 
genomic loci. c, Distribution of RegulomeDB scores for SNPs in significant 
genomic loci. Low scores indicate a higher likelihood of having a regulatory 
function. d, The minimum chromatin state across 127 tissue and cell types for 

SNPs in significant genomic loci. Lower states indicate higher accessibility, and 
states 1–7 refer to open chromatin states. e, Venn diagram showing the number 
of genes mapped by the four different strategies. f, Wordcloud plot showing 27 
genes implicated by all four strategies, with the size of the word representing 
–log10(P) statistics from the mvGWAS. Chr., chromosome; ncRNA, non-coding 
RNA. nSNP, number of SNP; NA, not available; UTR, untranslated regions.
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correlations in adjacent and connected structures with the hypothala-
mus (Fig. 3b). When using the LDSC method with FDR corrections for 
606 multiple tests, the ventral diencephalon (both sides: rg = 0.23–
0.54, PFDR = 1.35 × 10–26–1.21 × 10–2) and the brainstem (rg = 0.23–0.41, 
PFDR = 9.39 × 10–15–1.07 × 10–2) were identified as genetically correlated 
with all 6 hypothalamic measures. By contrast, significant correlations 
with at least one hypothalamic measure were found for the thalamus 
(both sides: rg = 0.22–0.36, PFDR = 5.91 × 10–5–7.90 × 10–3), the pallidum 
(both sides: rg = 0.21–0.29, PFDR = 4.15 × 10–7–2.24 × 10–2), the accumbens 
(both sides: rg = 0.23–0.25, PFDR = 1.79 × 10–2–2.35 × 10–2), the hippocam-
pus (both sides: rg = 0.16–0.20, PFDR = 5.64 × 10–3–4.07 × 10–2), the para-
hippocampus (both sides: rg = 0.22–0.23, PFDR = 2.46 × 10–2–4.55 × 10–2), 
the basal forebrain (both sides: rg = 0.42–0.85, PFDR = 3.56 × 10–3–
2.05 × 10–2) and the cerebellum exterior and white matter (both sides: 
rg = 0.18–0.31, PFDR = 8.48 × 10–8–1.57 × 10–2) (Supplementary Table 16). 
When using the GCTA–GREML method, nearly all (594 out of 606) the 
regional brain volumes were significantly correlated with the hypothala-
mus (PFDR ≤ 2.23 × 10–308–1.57 × 10–2, 557 correlations with rg = 0.05–1.00, 
37 correlations with rg = –0.83 to –0.08). Moreover, those identified in 
LDSC remained within the top strongest correlations and the same direc-
tions, including the ventral diencephalon (both sides: rg = 0.53–0.91, 
PFDR ≤ 2.23 × 10–308–3.94 × 10–82), the thalamus (both sides: rg = 0.48–0.85, 
PFDR ≤ 2.23 × 10–308–1.47 × 10–60), the accumbens (both sides: rg = 0.10–
0.73, PFDR ≤ 2.23 × 10–308–8.21 × 10–4), the hippocampus (both sides: 
rg = 0.55–0.86, PFDR ≤ 2.23 × 10–308–1.05 × 10–84) and the parahippocam-
pus (both sides: rg = 0.55– 0.76, PFDR ≤ 2.23 × 10–308–4.64 × 10–76) (Sup-
plementary Table 17). Consistent results from both methods indicated 
strong spatial colocalization of genetic covariation and a close genetic 
association with limbic system structures for the hypothalamus.

Genetic correlations with neuropsychiatric traits
To better understand the relationship between hypothalamic struc-
tures and functions, we investigated genetic correlations between the 
hypothalamus and neuropsychiatric traits using both the GCTA–GREML 

and LDSC methods. Traits were selected on the basis of five categories 
of physiological processes and functions for which the hypothala-
mus is engaged in the nervous system1. When using GCTA–GREML 
with individual-level trait data from the UKB as input and adjusting 
for volumes of frontal, parietal, temporal and occipital cortices to 
focus on hypothalamus-specific influence, we found that all these traits 
were significantly correlated with at least one hypothalamic measure, 
and all correlations of each trait, when P < 0.05, had the same direc-
tions between hypothalamic regions (Fig. 4 and Supplementary Table 
18). Specifically, the traits for sleep and circadian rhythms25,26 were 
genetically correlated with the whole hypothalamus and different 
substrates, including chronotype (rg = 0.87–0.98, PFDR ≤ 2.23 × 10–308), 
daytime napping (rg = -0.08, PFDR = 5.56 × 10–3) and sleep duration 
(rg = –0.11 to –0.08, PFDR = 2.82 × 10–3–3.67 × 10–2). Significant correla-
tions were also discovered for traits for risky behaviours2,27, particu-
larly with moderate-to-large estimates, including cigarettes per day 
(rg = –0.48 to –0.29, PFDR = 2.67 × 10–2–4.65 × 10–2), frequency of drink-
ing (rg = 0.11–0.28, PFDR = 2.96 × 10–11–2.16 × 10–4) and age at first sexual 
intercourse (rg = –0.18 to –0.14, PFDR = 1.25 × 10–12–4.84 × 10–6). Signifi-
cant genetic correlations also linked the hypothalamus to traits for 
learning and cognition28,29, including incorrect pair matches (rg = 0.18–
0.20, PFDR = 1.72 × 10–2–1.81 × 10–2) and reaction time (rg = 0.15–0.30, 
PFDR = 4.69 × 10–9–5.82×10-5). Additionally, traits for food intake and 
satiety30,31 (rg = 0.08–0.22, PFDR = 6.69 × 10–14–4.63 × 10–2) and parasym-
pathetic–sympathetic activity32,33 (rg = 0.06–0.27, PFDR = 8.05 × 10–14–
2.73 × 10–2) were correlated with hypothalamic measures. The LDSC 
analysis showed correlations at uncorrected P < 0.05 for cigarettes 
per day (rg = –0.11 to –0.10, P = 2.50 × 10–2–4.00 × 10–2), poor appetite 
or overeating (rg = 0.14, P = 4.74 × 10–2), body mass index (rg = 0.11, 
P = 4.74 × 10–2), systolic blood pressure (rg = 0.07–0.09, P = 5.90 × 10–

3–4.43 × 10–2) and diastolic blood pressure (rg = 0.07–0.09, P = 5.90 × 10–

3–4.43 × 10–2), but these correlations lost significance after corrections 
for multiple tests (Supplementary Table 19). We also performed 
GCTA–GREML without adjustment for the four cortices, which showed 
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similar results despite several associations with inconsistent direc-
tions (Supplementary Fig. 6 and Supplementary Table 20). Although 
these results indicated that correlations with inconsistent directions 
before adjustment had been confounded by other brain regions, they 
demonstrated that these relationships are not solely driven by general 
brain associations. Taken together, these findings provide support for 
the involvement of the hypothalamus in the neuropsychiatric traits.

Genetic associations with neuropsychiatric disorders
Genetic correlations were also investigated between the hypothalamus 
and 13 common neuropsychiatric disorders, including SCZ, bipolar 
disorder (BD), major depression (MD), generalized anxiety disorder 
(GAD), posttraumatic stress disorder (PSD), attention-deficit/hyper-
activity disorder (ADHD), anorexia nervosa (AN), autism spectrum 
disorder (ASD), obsessive–compulsive disorder (OCD), Tourette’s 
syndrome (TS), stroke, Alzheimer’s disease (AD) and PD. Because of 
rare neuropsychiatric diagnoses in the neuroimaging samples of the 
UKB, we only used the LDSC method with publicly available summary 
statistics rather than GCTA–GREML. We observed genetic correlations 
with uncorrected P < 0.05 between the following disorders and brain 
regions: OCD and the inferior tubular (rg = –0.27, P = 6.00 × 10−3), the 
superior tubular (rg = –0.21, P = 2.91 × 10−2) and the whole hypothala-
mus (rg = –0.18, P = 4.31 × 10−2); AD and the inferior anterior hypothala-
mus (rg = –0.24, P = 3.43 × 10−2); and SCZ and the whole hypothalamus 
(rg = –0.07, P = 3.15 × 10−2) (Supplementary Table 21). These corre-
lations were not significant after multiple testing corrections. We 
also performed bidirectional MR analyses on the 13 disorders and the 
hypothalamus to examine putative causal relationships. In forward 
MR, both the whole and superior tubular hypothalamus were associ-
ated with PSD at uncorrected P < 0.05 (inverse variance-weighted 
(IVW) odds ratio (OR) = 0.38–0.52, P = 3.81 × 10−3–4.32 × 10−2) and no 
directional pleiotropy was identified (PMR-EGGER intercept = 0.42–0.94) 
(Supplementary Table 22). In reverse MR, AD was associated with 4 
subregions at uncorrected P < 0.05, including the anterior superior, 
the anterior inferior, the tubular superior and the tubular inferior 
hypothalamus (OR = 0.96–0.97, P = 2.52 × 10−3–2.35 × 10−2), which 
showed no significant directional pleiotropy (PMR-EGGER intercept = 0.30–
0.96) (Supplementary Table 23). However, these associations were 

not significant after multiple testing corrections, which indicated a 
lack of evidence of causality.

We then explored the polygenic architecture of the hypothalamus 
and potential genetic overlap with disorders using conditional FDR 
and conjunctional FDR analyses with summary statistics of 13 com-
mon neuropsychiatric disorders. When conditioning the multivariate 
statistic of hypothalamus on the disorders, conditional Q-Q plots 
showed a clear pattern of pleiotropic enrichment (Supplementary Fig. 
7). In total, 36 (SCZ), 30 (BD), 34 (ASD), 31 (MD), 28 (PD), 33 (PSD), 31 
(OCD), 26 (stroke), 38 (ADHD), 31 (AN), 29 (AD), 29 (TS) and 25 (GAD) 
genetic loci were identified below the conditional FDR level of 0.01 and 
associated with the hypothalamus (Supplementary Table 24), which 
were all more than the 23 loci identified in the original mvGWAS for 
the hypothalamus. Of these, we identified 20 loci that significantly 
overlapped (conjunctional FDR level of <0.05) with SCZ, 4 with BD, 3 
with MD, 1 with PSD, 3 with ASD, 1 with OCD, 1 with stroke and 2 with PD 
(Supplementary Fig. 8 and Supplementary Table 25). We mapped the 
identified loci in conjunctional FDR analysis to genes using positional, 
eQTL and chromatin-interaction mapping (Supplementary Table 26) 
and found that multiple genes were implicated for more than two con-
ditions (Supplementary Table 27). Notably, a strong overlap was found 
among SCZ, BD and MD, for which 19 genes overlapped between the 
hypothalamus and all three disorders, including KLC1, RP11-73M18.2 
and XRCC3. These 3 genes were among the aforementioned 27 genes 
that were robustly associated with the hypothalamus. These results 
suggest that genetic pleiotropy exists among neuropsychiatric disor-
ders that, to some extent, share common underlying hypothalamic 
pathological mechanisms. When considered together with other 
evidence from genetic correlation analyses and MR, these findings 
provide support for the involvement of the hypothalamus in neu-
ropsychiatric disorders.

Replication and meta-analysis
Multivariate replications were conducted in 3 independent samples, 
including 3,284 UKB participants who were excluded from the discovery 
analyses as they were not of white British descent, 4,321 participants 
from the Adolescent Brain Cognitive Development (ABCD) study34 and 
1,685 participants from the IMAGEN study35. Sample descriptions are 
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provided in Supplementary Table 1. With the replication threshold set 
at 0.05, 7, 11 and 11 loci were replicated for the UKB, ABCD and IMAGEN 
samples, respectively (Supplementary Table 2). The strongest locus 
in the discovery sample, the ADATMS8 locus on chromosome 11, was 
replicated in all three datasets (Fig. 5 and Supplementary Tables 2 and 
28–30). A meta-analysis combining the four datasets was further per-
formed using the software METAL. Summary statistics from univari-
ate GWAS of the entire hypothalamic volume were used because the 
MOSTest method did not provide effect estimations or directions for 
mvGWAS. Consequently, associations with increased significance were 
detected for the variants in the ADAMTS8 locus after meta-analysis. 
Moreover, all the associations across samples, when P < 0.05, had con-
sistent effect directions (Supplementary Table 31). For example, the 
significance increased from P = 4.62 × 10–15 to P = 3.66 × 10–15 with the 
same direction for rs3740888 in the ADAMTS8 locus.

RVAS of the hypothalamus
To explore the effects of rare variants on hypothalamic structures, 
a RVAS using the SKAT-O test was performed among 28,988 unre-
lated British participants with both whole-exome sequencing and 
hypothalamic imaging data available36. The analysis was restricted to  
variants with a minor allele frequency value of <0.01, which were 
grouped into two categories (loss of function, and loss of function and 
probable deleterious missense) by protein-coding gene. No signifi-
cant association was identified under the P threshold (2.29 × 10–7) of 
Bonferroni correction for all 18,748 genes, 2 variant functional groups 
and 6 hypothalamic measures, whereas several subthreshold asso-
ciations were observed (Supplementary Fig. 9 and Supplementary  
Table 32). The gene PPT2, the strongest signal in RVAS, which encodes 
a member of the palmitoyl-protein thioesterase family, was associated 
with volumes of both the whole hypothalamus (PSKAT-O = 5.20 × 10–7)  
and the superior tuberal hypothalamus (PSKAT-O = 2.38 × 10–7). 
Associations were also observed for CHCHD1 and CHCHD4, two 
evolutionarily conserved genes, with the superior tuberal hypo-
thalamus (PSKAT-O = 3.07 × 10–7) and the posterior hypothalamus 
(PSKAT-O = 6.61 × 10–7), respectively. Further single variant analysis 
denoted that the signals were contributed by a burden of multiple 
ultrarare variants (Supplementary Table 33). Through browsing 
the GWAS ATLAS resource (https://atlas.ctglab.nl)37, PPT2, CHCHD1  
and CHCHD4 have been previously linked to metabolism, blood 
pressure and immunity, which were closely related to hypotha-
lamic functions. Notably, we found associations of the ADAMTS8 
gene with volumes of the whole hypothalamus and its subregions 
(PSKAT-O = 8.09 × 10–4–4.10 × 10–2).

MR for ADAMTS8 and the hypothalamus
Given the strong and robust signals from ATAMTS8, we proposed that 
the expression of this gene would affect hypothalamic structures. MR 
analyses were therefore performed with eQTLGen summary statistics 
(the largest eQTL data) as the exposure input and our univariate GWAS 
of the whole hypothalamic volume as the outcome input. After LD 
pruning and examining instrumental SNPs associated with potential 
confounders (Methods), three independent genome-wide SNPs in 
chromosome 11 (rs3740888, rs747250 and rs11606448) were used for 
MR. The IVW method, the primary MR analytical approach, showed 
that ADAMTS8 expression levels were significantly associated with the 
volume of the whole hypothalamus (βIVW = 0.92, P = 1.72 × 10–5; Fig. 6a). 
Sensitivity analyses, including weighted median and weighted mode 
methods, also presented significant results, and different methods 
showed consistent estimates (Fig. 6b), which suggested that ADAMTS8 
expression had an influence on hypothalamic structures. MR-Egger 
intercepts indicated no directional pleiotropy (P = 0.22). Moreover, 
leave-one-out analysis and single SNP analysis showed that the asso-
ciations were not driven by a single SNP (Supplementary Tables 34 
and 35).

Discussion
In the current study, we conducted a large genome-wide and 
exome-wide association study of the hypothalamus and revealed 
genetic architectures of hypothalamic structures. GWAS using a 
multivariable approach identified 23 loci linked to the structure and 
a moderate heritability for hypothalamic volumes. Functional analyses 
implicated genes involved in intracellular trafficking and biological 
processes enriched in biosynthesis and metabolism. We observed 
genetic associations between the hypothalamus and adjacent brain 
structures of limbic systems. We also discovered that hypothalamic 
structures were genetically correlated with neuropsychiatric traits 
such as chronotype, risky behaviours, cognitive levels, satiety and 
sympathetic–parasympathetic activity. Additionally, genetic overlaps 
between the hypothalamus and neuropsychiatric disorders were recog-
nized, and the identification of shared genes implicated for disorders 

0

10

20

30

40

50

–l
og

10
(P

 v
al

ue
)

0.2
0.4
0.6
0.8

r2

0

2

4

6

0

2

4

6

0

2

4

6

APLP2

ST14

ZBTB44 ADAMTS8

ADAMTS15

MIR8052

C11orf44

130.1 130.2 130.4 130.5130.3

Position on chr. 11 (Mb)

UKB
N = 32,956

ABCD
N = 4,321

UKB non-WB
N = 3,287

IMAGEN
N = 1,685

Fig. 5 | Regional association plots of the ATAMTS8 locus across discovery and 
replication samples. Associations of mvGWAS in different samples are shown 
for the region covering ±0.25 Mb of the ATAMTS8 locus. The vertical dashed lines 
define the ATAMTS8 locus. The raw two-sided P values are presented without 
corrections for multiple comparisons. The horizontal dashed lines indicate the 
replication threshold of 0.05. Variants with the smallest P values are shown in 
purple dots. Dot colours represent different levels of LD. non-WB, non-white 
British.

http://www.nature.com/nathumbehav
https://www.ncbi.nlm.nih.gov/snp/?term=rs3740888
https://atlas.ctglab.nl
https://www.ncbi.nlm.nih.gov/snp/?term=rs3740888
https://www.ncbi.nlm.nih.gov/snp/?term=rs747250
https://www.ncbi.nlm.nih.gov/snp/?term=rs11606448


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01792-6

suggested common hypothalamic pathological mechanisms. We suc-
cessfully replicated the ADAMTS8 locus, the top signal in discovery 
GWAS, in three separate samples and found increased significance in 
meta-analysis. Although no significant associations were detected in 
RVAS, the analysis implied that multiple rare variants also contributed 
to the association between ATAMTS8 and the hypothalamus. MR analy-
ses further supported a biological connection between ATAMTS8 gene 
expression levels and hypothalamic structures.

Our findings agreed with those reported in the literature. The 
most significant locus tagged by rs3740888 was previously found to 
be associated with the ventral diencephalon and nearby structures 
such as the parahippocampus, the brainstem and the ventricles7. The 
variant was also identified in large-scale GWAS of blood pressure8–10, 
which aligned with our results of a genetic correlation between hypo-
thalamic measures and blood pressure and with the observation that 
the top hit signal was mainly detected from the analysis of the tuberal 
hypothalamus, a region responsible for blood pressure control38. The 
second identified locus tagged by rs199534 mapped to genes closely 
associated with hypothalamic functions. For instance, CRHR1 was 
specific to regulation of the hypothalamic–pituitary–adrenal pathway. 
SPPL2C, ARL17B, MAPT, STH, WNT3, KANSL1, PLEKHM1 and ARHGAP27 
were clustered by STRING analysis (Supplementary Fig. 3) and were 
shown to be all engaged in intracellular transport system (Results). 
Together with the gene ontology analysis indicating biological pro-
cesses enriched in synthesis and decomposition of biochemical com-
pounds, this evidence accords with the major role of the hypothalamus 
in regulating body composition and energy metabolism1.

The study of the hypothalamus and its topological variability pro-
vides valuable insights into underlying physiological and pathological 
processes. Consistent genetic associations with three chronotypic 
phenotypes were in line with common knowledge that the hypothala-
mus has an essential role in circadian rhythms39. Additionally, the 
findings on genetic associations of the hypothalamus with regional 
brain structures mutually agreed with those with functional traits. 
The hypothalamus, the hippocampus, the thalamus, the pallidum, 
the accumbens and the basal forebrain constitute the key compo-
nents of two different networks in the limbic system: one essential for 
memory and learning, the other one for social–emotional functions1. 
Our analyses provided genetic evidence of both structural and func-
tional associations within these networks. Furthermore, the genetic 
correlations both with adjacent structures and with functional traits 
complemented the genetic overlap analysis in confirming a role of the 
hypothalamus in neuropsychiatric disease.

It seemed that heritability and regional volume correlated with 
the hypothalamus. Although larger hypothalamic subunits such as 

the posterior hypothalamus had a h2 value of 0.30, smaller subunits 
such as the anterior inferior hypothalamus only had a h2 value of 0.10. 
A potential explanation for this result is that measured values of small 
regions included noise signals, which might have influenced estima-
tions of heritability. The other possibility is that the low h2 values of 
small regions are partially attributed to their low heritability per se. 
For instance, the posterior hypothalamus (243.45 mm3) was smaller 
than the inferior tuberal hypothalamus (281.44 mm3), whereas the 
posterior hypothalamus showed a higher h2 (0.30) than the inferior 
tuberal hypothalamus (0.18). Similar results were obtained for the 
posterior hypothalamus (243.45 mm3) and the whole hypothalamus 
(826.62 mm3). The h2 of the posterior hypothalamus (0.30) was higher 
than the whole hypothalamus (0.25).

Strong evidence was found for ADAMTS8, the role of which in hypo-
thalamus had not been investigated before. Consistent association 
results were found from four separate imaging cohorts. In particular, 
the associations between ADAMTS8 and hypothalamic structures were 
discovered in the ABCD and IMAGEN cohorts, representing individuals 
at an early stage of life, which strengthened the validity of our findings 
and suggested an age-independent effect of ADAMTS8. Additionally, 
results of exome-wide scans in the UKB also supported associations 
for ADAMTS8. Furthermore, the association between lower ADAMTS8 
expression levels and larger hypothalamic sizes (Fig. 6; note the pheno-
typic variables were inverse-rank-transformed before mvGWAS using 
the MOSTest, Methods) was in line with existing research of ADAMTS8. 
This gene encodes a secreted proteinase anchored to the extracellular 
matrix and can disrupt angiogenesis in vivo40. The inhibiting effect on 
vessel formation may explain the adverse effects on volumetric meas-
ures of the hypothalamus. Further experimental research is required 
to reveal causal molecular association mechanisms of ADAMTS8 with 
hypothalamic structures.

Our findings implied that several genes contribute to the pathol-
ogy of the hypothalamus in different psychiatric and neurological 
conditions. These findings support the idea of pleiotropy across a 
spectrum of neuropsychiatric disorders and may be worth further 
investigation for the identification of disorder-independent drug 
targets16. For example, we discovered that KLC1 overlapped between 
the hypothalamus and SCZ, MD and BD. KLC1 encodes a member of 
the kinesin light chain family, which is highly expressed in brain tis-
sue. Kinesin is a tetrameric molecule composed of two heavy chains 
and two light chains. It transports various cargos along microtubules 
towards their plus ends such as vesicles, mitochondria and the Golgi 
complex41. Although the heavy chains provide motor activity, the 
light chains bind to various cargo. Researchers recently found that 
dysfunction of kinesin proteins impairs vesicle transport of NMDA 
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receptor subunit 2A and the adenomatous polyposis coli complex, 
cause disrupted synaptic plasticity and lead to behavioural and cog-
nitive defects, which underlie SCZ pathogenesis42,43. Previous studies 
also found that kinesin-mediated antimanic and antidepressant effects 
of glycogen synthase kinase 3 inhibitors interfere with dissociation 
of vesicles containing AMPA44. Therefore, the kinesin cargo system 
may provide valuable targets for developing new therapeutics for 
psychiatric disorders.

The segmentation tool we used was more effective than ones used 
in earlier studies. The mean absolute volume (±s.d.) of the segmented 
hypothalamus was 826.6 (78.9) mm3, within the range of reported 
results from other MRI volumetric studies13,45,46. By contrast, previ-
ously reported volumes featured a high degree of variability, ranging 
from 600 mm3 to 1,100 mm3. This was primarily owing to the absence 
of established guidelines for the delineation of the hypothalamus. On 
the one hand, there was considerable variation in the structures that 
were defined as ‘hypothalamic’ or included in the hypothalamus across 
studies. On the other hand, manual segmentation of such a delicate 
structure was severely prone to inter-rater and intra-rater variability 
and resulted in restriction of large sample usage. Nomenclature and 
definition of the hypothalamus used in a previous study13 were adopted 
in the current study, which provided identifiable anatomical landmarks 
for segmentation. The introduction of the automated delineation 
method in our research contributed to reliable phenotypic measure-
ment and GWAS analyses.

The multivariate approach was also a strength in our study. MOST-
est is not repeating univariate analyses, nor is it recapturing the uni-
variate associations from the most significant univariate results. Take 
the lead SNP rs55938136, for example. Although the P values of all 
univariate results were not less than 5 × 10-8, the result of MOSTest 
was significant (P = 5.36 × 10–13). The same conditions applied to other 
lead SNPs such as rs6752635, rs17048681, rs1375875, among others. In 
addition, although only 7, 1, 0, 1, 4 and 9 loci were detected in univariate 
GWAS of the 6 hypothalamic measures, 23 were identified in mvGWAS. 
A multivariate approach can boost statistical power while maintaining 
data scale compared with separate univariate analyses of individual 
phenotypes16. A single set of genome-wide association results, pertain-
ing simultaneously to multiple regions of the hypothalamus, was then 
fed into functional annotation and downstream analyses, such as gene 
mapping and testing for genetic overlaps with diseases47. Without the 
noise inherent in repeat univariate testing, the multivariate approach 
enabled the exploitation and interpretation of important features of 
the genetic architecture of specific brain structures.

Our GWAS had several limitations. First, the study was mainly 
conducted among participants of British ancestry with a specific age 
range. We noted that there were associations with inconsistent effect 
directions but no significance in UKB non-white British and ABCD 
cohorts, which suggested that sample heterogeneity due to ancestry 
and age may have influenced effect estimation. Thus, the generaliza-
tion of these findings to other ethnicities or specific cohorts should 
be treated with caution. We anticipate that large-scale diverse samples 
will become more readily available to further verify our findings and 
make new discoveries. Second, the automated segmentation tool par-
cellated the hypothalamus into only five subdivisions instead of indi-
vidual nuclei. The small size of the hypothalamus, the low power of the 
magnetic field and insufficient identifiable landmarks in MRI were the 
main reasons for this limitation. Accordingly, analyses of hypothalamic 
nuclei could not be conducted, and the genetic correlations between 
the hypothalamic subdivisions and functional traits in our analysis may 
not be interpreted as direct evidence for specific nucleus–function 
relationships. A more detailed segmentation tool is needed. Third, 
there were 5% overlapping individuals from the UKB in the summary 
statistics of AN. Unlike LDSC, sample overlap is principally not allowed 
in MR and conditional FDR and conjunctional FDR methods. Neverthe-
less, previous research has shown that this small percentage of sample 

overlap is not sufficient to bias the analyses48,49. Fourth, although a 
large number of hypothalamic samples were analysed in our study, the 
sample size may be relatively insufficient for RVAS. This may partially 
explain the lack of significant associations in RVAS and the fact that 
associations with the strongest signals were all contributed by ultra-
rare variants that had minor allele counts of fewer than ten. Finally, 
the specificity of the hypothalamus to neuropsychiatric traits needs 
further investigation. Our research provided multiple lines of evidence 
from functional annotation, genetic correlations and genetic overlap 
collectively supporting that the hypothalamus is genetically involved 
in neuropsychiatry. Additionally, sensitivity analyses controlling the 
four different cortices showed that the associations were not solely 
driven by general associations in the brain. However, it cannot be com-
pletely excluded that the association between the hypothalamus and 
neuropsychiatric traits was due to other brain regions. More detailed 
research is needed to untangle associations of the hypothalamus and 
other brain regions with neuropsychiatric traits.

In conclusion, our findings improved our understanding of the 
intricate relationships between topographical features, physiological 
functions and pathological processes, and provide new insights into 
key molecular mechanism that underlie the structural formation of 
the hypothalamus.

Methods
Participants
This study is based on publicly available data with different levels of 
accessibility. Individual-level data from three independent cohorts 
were used, including the UKB (http://www.ukbiobank.ac.uk/), the 
ABCD study (https://abcdstudy.org/) and the IMAGEN study (https://
imagen-europe.com/). This study was approved by the Institutional 
Review Boards (IRBs) of all participating institutions and was carried 
out in accordance with the approved protocols. The UKB was approved 
by the National Health Service National Research Ethics (reference 11/
NW/0382). The ABCD study was approved by the central IRB at the 
University of California, San Diego. The IMAGEN study was approved 
by the institutional ethics committees of King’s College London, the 
University of Nottingham, Trinity College Dublin, the University of 
Heidelberg, Technische Universität Dresden, Commissariat à l’Energie 
Atomique et aux Energies Alternatives and the University Medical 
Center at the University of Hamburg. Written informed consent was 
obtained from all participants and/or their parents or guardians, and 
children in the ABCD study consented before participation.

We used brain MRI data from ~40,000 genotyped individuals 
from the UKB under accession number 19542 (https://biobank.ndph.
ox.ac.uk/showcase/index.cgi). Our primary analytical sample was 
restricted to white British individuals and data availability and process-
ing (see below) led to a final sample of 32,956 participants (mean age of 
64.3 years) in the discovery GWAS and 28,988 participants in the RVAS. 
A dataset of 3,287 participants (mean age of 62.8 years) also from the 
UKB, who identified as white but not British (see below), were included 
as GWAS replication samples. Additionally, we used the ABCD study 
and the IMAGEN study for GWAS replication50. Data of 4,321 children 
(mean age 9.90 years) in the ABCD study and of 859 young adolescents 
(mean age 14.0 years) in the IMAGEN study with complete genetic data 
and T1 MRI scans were included. Characteristics of the participants are 
summarized in Supplementary Table 1. The current study was not pre-
registered. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to or larger than those reported 
in previous publications on neuroimaging GWAS10,11,47.

Quality control of genetic data
For GWAS, we followed a standard quality control procedure to that of 
the UKB v.3 imputed genetic data51. Individuals with missing genotype 
rates exceeding 0.05, a mismatch between self-reported and genetic 
sex, putative sex chromosome aneuploidy, heterozygosity rate outliers, 

http://www.nature.com/nathumbehav
https://www.ncbi.nlm.nih.gov/snp/?term=rs55938136
https://www.ncbi.nlm.nih.gov/snp/?term=rs6752635
https://www.ncbi.nlm.nih.gov/snp/?term=rs17048681
https://www.ncbi.nlm.nih.gov/snp/?term=rs1375875
http://www.ukbiobank.ac.uk/
https://abcdstudy.org/
https://imagen-europe.com/
https://imagen-europe.com/
https://biobank.ndph.ox.ac.uk/showcase/index.cgi
https://biobank.ndph.ox.ac.uk/showcase/index.cgi


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01792-6

more than ten putative third-degree relatives were first removed. 
The primary analyses were restricted to individuals with ‘white Brit-
ish ancestry’, as previously defined51, based on the combination of 
self-report and genetic principal component analysis (UKB Field ID: 
220006). Variants with a call rate of <0.95, a minor allele frequency 
of <0.01, a Hardy–Weinberg P value of <10–6 or an imputation quality 
score of <0.5 were excluded. We applied the same procedure to obtain 
the independent GWAS replication dataset of a white population from 
the UKB, except that the participants did not self-identify as British 
nor did they fall within the genetic cluster bounds of ‘white British 
ancestry’ as previously defined51. For ABCD and IMAGEN, non-European 
participants were removed and similar quality control processes for 
genotyping data were applied (see details in Supplementary Table 36).

For RAVS of the UKB, whole-exome sequencing data from 
~450,000 participants were used. Details of sample preparation and 
sequencing have been previously described52. In this study, we utilized 
the OQFE whole-exome sequencing pVCF files provided by the UKB and 
performed additional quality control similar to the previous study53. In 
brief, multiallelic sites were split into biallelic sites, and all calls that had 
low genotype quality or extreme low or high genotype depth were set 
to no-call. We also removed variants with a call rate of <90%, a Hardy–
Weinberg P value of <10–15 and location in Ensembl low-complexity 
regions. Samples withdrawn from the study, duplicates, samples with 
discordance between self-reported and genetically inferred sex, sam-
ples for which the transition/transversion ratio, the heterozygote/
homozygote ratio, single nucleotide variant/insertion and deletion 
ratio and number of singletons exceeded eight standard deviations 
from the mean, samples with genetic relation to one another at second 
degree or closer, and non-British were removed.

Preparation of imaging data and segmentation of the 
hypothalamus
UKB T1-weighted MRI scans were collected from three scanning sites 
throughout the United Kingdom on identically configured Siemens 
Skyra 3T MRI scanners with 32-channel radiofrequency receive head 
coil. The full scanning protocols and procedures can be found in UKB 
documents (https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/
brain_mri.pdf). ABCD T1-weighted scans were obtained from 21 imag-
ing sites using Siemens Prisma, GE and Philips 3T scanners. Scanning 
protocols were harmonized across sites, and full details of imaging 
protocols used in the ABCD study have been previously outlined34. 
IMAGEN T1-weighted MRI scans were acquired using Siemens TrioTim, 
GE and Philips 3T scanners at eight sites using compatible scanning 
parameters and the same scanning protocol at all sites. Full details of 
MRI acquisition, quality checks and standardization across scanners 
have been previously described for the IMAGEN protocol50.

With T1-weighted MRI scans from three cohorts, the whole hypo-
thalamus and its subregions, including the anterior superior, the anterior 
inferior, the superior tuberal, the inferior tuberal and the posterior hypo-
thalamus, were then delineated using a previously developed automated 
segmentation tool15. The fully automated segmentation method was 
based on a deep convolutional neural network. It was established with 
aggressive data augmentation to make the model robust to T1-weighted 
scans from different sources and has previously been validated in three 
independent datasets, attributing reliable performance and replicable 
results, thus without any need for preprocessing15. For each of the six 
hypothalamic measures, we calculated the summed volumes of both 
sides as phenotype input in GWAS and removed data points deviating 
more than 5 median absolute deviation from the median54.

mvGWAS
MOSTest can leverage the distributed nature of genetic effects across 
spatially distributed brain phenotypes while accounting for their covar-
iances, which can boost statistical power to discover potential vari-
ant–phenotype associations. Specifically, the multivariate correlation 

structure is estimated on randomly permuted genotype data. MOSTest 
then calculates the Mahalanobis norm as the sum of squared decorre-
lated z values across univariate GWAS summary statistics to integrate 
effects across phenotypes into a multivariate z statistic for each genetic 
variant before the gamma cumulative density function is used to fit an 
analytical form for the null distribution16. This allows the extrapolation 
of the null distribution below the 5 × 10−8 significance threshold without 
performing an unfeasible number of permutations. The mathematical 
details and the soft implementation procedure can be found in ref. 16.

In the current study, the volumes of the total hypothalamus and 
each of the five subregions were residualized for age, age squared, 
sex, scanning site, intracranial volume and the first ten genetic 
principal components. The resulting residuals were then jointly fed 
into the MOSTest analysis. By default, all phenotypic variables were 
inverse-rank transformed into a normal distribution before GWAS 
analysis. MOSTest performs permutation testing to identify genetic 
effects across multiple phenotypes and generates mvGWAS summary 
statistics across all the six hypothalamic measures. As mvGWAS did not 
provide effect estimates and directions, the univariate GWAS of each 
hypothalamic measure was also extracted from the univariate stream 
of MOSTest for post-GWAS analyses, including genetic correlations, 
MR, meta-analysis and heritability estimation. The LDSC intercepts 
calculated using LDSC (v.1.0.1) were used to evaluate inflation and 
confounding bias. To increase the robustness of the mvGWAS results, 
we additionally added batch and array as well as volumes of frontal, 
parietal, temporal and occipital cortices in covariates and re-ran the 
MOSTest in the discovery sample.

MOSTest was also performed for replication with samples from 
the non-white British group of the UKB and the ABCD and IMAGEN 
studies. The software METAL55 was used to perform meta-analysis on 
four samples using univariate GWAS summary statistics of the whole 
hypothalamus derived from MOSTest.

Genomic loci characterization and gene mapping
FUMA (v.1.3.6)17, an online platform for post-GWAS analysis, was applied 
to characterize genomic loci, perform functional annotation and imple-
ment gene mapping. Default parameters were applied in the process 
unless otherwise specified.

In brief, using the 1000 Genomes Phase 3 EUR as a reference panel, 
SNPs with genome-wide significant mvGWAS P < 5 × 10–8 that had LD 
r2 < 0.6 with any others were identified as independent significant SNPs. 
A fraction of the independent significant SNPs in approximate linkage 
equilibrium with each other at r2 < 0.1 were considered as a lead SNP. 
LD blocks of significant SNPs located within 250 kb of each other were 
merged into one genomic locus. Candidate SNPs were defined as the 
SNPs that had LD r2 ≥ 0.6 with any of the independent significant SNPs 
in the genetic loci. The variants included those from the reference panel 
that might not have been included in the GWAS. The major histocompat-
ibility complex region on chromosome 6 was excluded by default. The 
associated SNPs were annotated by FUMA based on functional catego-
ries, including ANNOVAR categories56, combined annotation-dependent 
depletion scores57, RegulomeDB scores58 and chromatin state59.

Gene mapping was performed using different mapping strategies, 
including positional mapping (physical distance within 10 kb), eQTL 
mapping (four brain-expression data repositories: PsychENCORE60, 
CommonMind Consortium61, BRAINEAC62 and GTEx v8 Brain63 with the 
significant level set at FDR of 0.05) and chromatin-interaction mapping 
(seven brain-related Hi-C chromatin conformation capture datasets: 
PsychENCORE EP link (one way)60, PsychENCORE promoter anchored 
loops61, HiC adult cortex47, HiC foetal cortex47, HiC dorsolateral pre-
frontal cortex64, HiC hippocampus64 and HiC neural progenitor cell64; 
17 brain-related repositories in the Roadmap Epigenomics Project65: 
E053, E054, E067, E068, E069, E070, E071, E072, E073, E074, E081, 
E082, E003, E008, E007, E009 and E010). Genome-wide gene-based 
association analysis was also used to map genes by performing MAGMA 
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(v.1.08)20 implemented in FUMA with complete mvGWAS summary 
statistics as input. MAGMA conducted multiple linear regression to 
obtain gene-based P values and the Bonferroni-corrected significant 
threshold was set at P = 0.05/18877.

Protein–protein interaction network
Protein network analysis was performed using STRING (http://
string-db.org) with 27 significant genes appearing in all four mapping 
strategies as input. Information about protein–protein interactions 
is included in the STRING dataset from a variety of sources, includ-
ing experimental data, publications and computational prediction 
techniques. Only links with a confidence score of at least medium 
confidence (confidence score of >0.4; default parameter) were kept.

Gene set enrichment analysis
All the mapped genes arising from mvGWAS was used as input for 
gene set enrichment analysis, using the 7,343 gene ontology biological 
process gene sets66, on the basis of the hypergeometric test as imple-
mented in GENE2FUNC of FUMA17.

Heritability estimation and genetic correlations between 
neuroimaging measures
SNP heritability was estimated using the GREML method implemented 
in GCTA (v.1.93.2)67. Covariates were the same as those in mvGWAS. 
Heritability was also estimated using LDSC (v.1.0.1)68 with univariate 
GWAS summary statistics as input for which genomic inflation factors 
(λGC) and LDSC intercepts were also calculated.

Genetic correlations among six hypothalamic measures and among 
hypothalamic measures and regional brain volumes were analysed using 
both LDSC and bivariate GCTA–GREML methods. When performing 
LDSC, a large-scale imaging GWAS of 19,629 UKB participants provided 
summary statistics of 101 cortical, subcortical and ventricular volumet-
ric imaging phenotypes69. We used the Benjamini and Hochberg FDR 
method to adjust for multiple testing. Pre-computed European LD scores 
from the 1000 Genomes Project Phase 3 in the LDSC package were used. 
As recommended, we restricted our analyses to Hapmap3 SNPs and 
excluded the major histocompatibility region. When performing GCTA–
GREML, individual-level data of the 101 imaging-derived phenotypes 
extracted using FreeSurefer aparc (UKB Category ID = 192) and aseg 
(UKB Category ID = 190) atlases were used (Supplementary Table 15).

Genetic correlations between the hypothalamus and 
neuropsychiatric traits and disorders
Both LDSC and bivariate GCTA–GREML were used to explore the genetic 
correlations among hypothalamic measures and function-related 
traits. Five different categories of traits were tested with summary sta-
tistics downloaded from the corresponding published GWAS for LDSC 
and with individual-level data acquired from certain UKB Field IDs for 
GCTA–GREML, including the following: sleep and circadian rhythms 
(chronotype70, Field ID: 1180; daytime napping71, Field ID: 1190; sleep 
duration71, Field ID: 1160); risky behaviours (cigarettes per day72, Field 
IDs: 3456 and 2887; frequency of drinking72, Field ID: 1558; age at first 
sexual intercourse73, Field ID: 2139); learning and cognition (reaction 
time74, Field ID: 20023; incorrect pair matches in round75, Field ID: 399); 
food intake and satiety (recent poor appetite or overeating75, Field ID: 
20511; body mass index76, Field ID 21001); and parasympathetic–sym-
pathetic activity (systolic blood pressure77, Field ID: 4080; diastolic 
blood pressure77, Field ID: 4079; heart rate78, Field ID: 102) (Supple-
mentary Tables 37 and 38). To investigate the hypothalamus-specific 
influence, the GCTA–GREML data were re-run adjusting for frontal, 
parietal, temporal and occipital cortices that were derived from the 
FreeSurefer aparc atlas79. We corrected for multiple testing through 
an FDR of 0.05 in both methods, and brain regions with P values pass-
ing FDR corrections of both sides were considered to be significantly 
correlated with the hypothalamus.

The genetic correlations between hypothalamic measures and 
neuropsychiatric disorders were evaluated using LDSC with publicly 
available GWAS summary statistics for 13 neuropsychiatric disorders: 
SCZ80, BD81, MD82, GAD83, PSD84, ADHD85, AN86, ASD87, OCD88, TS89, 
stroke90, AD91 and PD92. The sample sizes ranged from 9,725 to 446,696 
individuals with European ancestry. Detailed information is summa-
rized in Supplementary Table 39. Correlations with P values surviving 
FDR correction were considered significant.

Genetic overlap between the hypothalamus and 
neuropsychiatric disorders
The pleiotropy-informed conditional FDR method was used to identify 
genetic overlaps between the hypothalamus and common neuropsy-
chiatric disorders, for which the conditional Q-Q plot, the conditional 
FDR method and the conjunctional FDR method were sequentially 
applied. The publicly available GWAS summary statistics for the 13 
neuropsychiatric disorders were also used here as input. The analyses 
were run in Matlab R2018b and Python 3.7.7. A detailed description of 
genetic overlap analyses is provided in the Supplementary Information.

RVAS
RVAS was performed to further identify genes and rare genetic vari-
ants associated with the volume of the whole hypothalamus and each 
subregion using SKAT-O test through SAIGE-GENE+ (ref. 36) among 
unrelated British individuals. Variants were filtered to the rare ones 
(minor allele frequency < 0.01) and were annotated using SnpEff93, and 
the most severe consequence was kept for each variant. Then variants 
were grouped into loss of function (annotated as stop gained, start lost, 
splice donor, splice acceptor, stop lost or frameshift) and probable del-
eterious missense (predicted as deleteriousness in SIFT94; PolyPhen2 
HDIV and PolyPhen2 HVAR95; LRT96; and MutationTaster97) and were 
collapsed for each protein-coding gene. Similar to the GWAS analysis, 
age, age squared, sex, scanning site, intracranial volume and the first 
ten genetic principal components (calculated using whole-exome 
sequencing data) were adjusted. All phenotypic variables underwent 
inverse normalization and a relative coefficient cut-off of 0.05 for 
the sparse GRM for the variance ratio estimation was used. Owing to 
an insufficient number of common variants to calculate the variance 
ratio, the parameter --isCateVarianceRatio was set to ‘false’ in the RVAS. 
Bonferroni correction was used, and P < 2.29 × 10–7 (that is, 0.05/218219, 
all genes, all variant functional groups and all phenotypes together) 
was considered significant. For several genes of interest, we further 
performed single variant association analysis for the rare variants 
(minor allele counts ≥ 10) and the ultrarare variants, and variants with 
minor allele counts < 10 were collapsed into one group in the single 
variant association analysis.

MR analyses
Bidirectional MR analyses were conducted among the 6 hypothalamic 
measures and 13 neuropsychiatric disorders. Genetic instruments 
were selected at the primary P threshold of 5 × 10–8 and the secondary 
P threshold of 1 × 10–6. The SNPs were clumped with a window size of 
10,000 kb and a LD r2 of 0.001 using the 1000 Genomes EUR refer-
ence panel. The IVW was conducted as the primary method given its 
high sensitivity for causal inference98. Another three methods were 
performed to complement and enhance the reliability of the results, 
including MR-Egger, the weighted median and the weighted mode. 
MR-Egger uses the slope coefficient of the Egger regression and can 
provide a robust estimate even if all instruments are invalid99. When 
the ‘no measurement error’ assumption in MR-Egger was violated, as 
indicated by an I2

GX statistic of less than 0.90, the simulation extrapo-
lation method was used for bias adjustment100. The weighted median 
method can generate reliable results when up to 50% instruments are 
invalid101. The weighted mode method presents less bias and lower 
type-I error rates under relaxed instruments assumptions102. When only 
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one genetic instrument was available, the Wald ratio method was used. 
We performed FDR corrections for 78 comparisons in both forward and 
reverse MR. Associations with PIVW/Wald ratio values surviving FDR correc-
tions were considered significant. The MR-Egger intercept indicating 
the mean pleiotropic effect of all genetic variants was used to examine 
the potential bias of directional pleiotropy. Heterogeneity in the IVW 
estimates was assessed using Cochran’s Q-test. The F-statistics and 
power calculation were based on previously described methods103,104. 
The R packages TwoSampleMR (v.0.5.5), simex (v.1.8) and ieugwasr 
(v.0.1.5) were used to implement these methods.

In MR investigating the association between gene expression with 
the strongest signal and the hypothalamic volume, we used univariate 
GWAS summary statistics of the whole hypothalamic volume as the 
outcome dataset. Summary statistics from eQTLGen datasets were 
extracted as the exposure dataset because of its largest sample size 
among the current eQTL datasets105. We set a LD pruning window size 
of 10,000 kb, an r2 threshold of 0.5 and a P value threshold of 1 × 10−6 
using the 1000 Genomes EUR reference panel. As above, IVW was 
the primary method used to conduct MR with three other MR meth-
ods. The MR-Egger intercept was also used for detecting directional 
pleiotropy. Leave-one-out and single-SNP analyses were performed 
to examine effects of outlying SNPs on MR estimates. To avoid con-
founder bias that interferes with the pathway between gene expression 
and the hypothalamus, we examined the associations between the 
instruments and potential confounders. Scarce evidence was found 
for established confounding factors phenotypically associated with 
both ADAMTS8 levels and hypothalamus. Previous studies identified 
associations of ADAMTS8 levels with pulmonary arterial hypertension 
and right ventricular function40 that possibly linked to the hypothala-
mus106. In addition, socioeconomic status, education, drinking and 
smoking behaviour were reported to influence neuropsychiatric 
disorders and brain structure alterations107, which may have a role 
in confounding the association between gene expression and the 
hypothalamus. Hence, we referred to the PhenoScanner v.2 database 
(http://www.phenoscanner.medschl.cam.ac.uk/), the NHGRI-EBI 
GWAS catalogue (https://www.ebi.ac.uk/gwas/docs/file-downloads/) 
and the recent GWAS summary statistics of these traits72,108–112.  
No confounder SNPs were identified.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The full summary statistics of multivariate and univariate GWAS for 
the hypothalamus can be found at the figshare website (https://fig-
share.com/projects/GWAS_summary_data_of_hypothalamus/165589). 
Summary statistics of regional brain measures are available at 
https://www.med.unc.edu/bigs2/data/gwas-summary-statistics/. 
Summary statistics of neuropsychiatric traits and disorders for 
genetic correlation analyses are summarized in Supplementary 
Tables 38 and 39. Summary statistics of eQTL were obtained through 
the eQTLGen website (https://molgenis26.gcc.rug.nl/downloads/
eqtlgen/cis-eqtl/2019-12-11-cis-eQTLsFDR-ProbeLevel-CohortInfo
Removed-BonferroniAdded.txt.gz). The individual-level imaging 
and genetic data used in the current study are available through the 
UKB (https://biobank.ndph.ox.ac.uk/showcase/index.cgi, accession 
number 19542), the ABCD (https://nda.nih.gov/data_dictionary.html?
source=ABCD%2BRelease%2B4.0&submission=ALL) and the IMAGEN 
(https://imagen2.cea.fr/account_manager). Data were used under 
licence and can be accessed through applications.

Code availability
This study used openly available software and codes, including 
MOSTest (https://github.com/precimed/mostest), PLINK (v.2.0;  

https://www.cog-genomics.org/plink/), FUMA (v.1.3.6; https://fuma.
ctglab.nl/), MAGMA (v.1.08; https://ctg.cncr.nl/software/magma/, 
also implemented in FUMA), GCTA (v.1.93.2; http://cnsgenomics.
com/software/gcta/), LDSC (v.1.0.1; https://github.com/bulik/ldsc/), 
STRING (https://www.stringdb.org/), Michigan Imputation Server 
(https://imputationserver.sph.umich.edu/), cFDR (https://github.com/
precimed/pleiofdr/), METAL (v.2011-03-25; http://www.sph.umich.
edu/csg/abecasis/Metal/), SAIGE-GENE+ (https://saigegit.github.io/
SAIGE-doc/), R (v.4.0.3), Matlab R2018b and Python (v.3.10). Custom 
scripts for the analyses in this paper can be found at GitHub (https://
github.com/wbs-whuer/GWAS_hypothalamus/).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was involved in data collection (data used is all directly available from UKB,ABCD, and IMAGEN as described in details in the 
paper)

Data analysis R version 4.0.3 were used for data cleansing and visulization. 
MOSTest on matlabR2018b (https://github.com/precimed/mostest) for multivariable GWAS; 
PLINK version 2.0 (https://www.cog-genomics.org/plink/) for genetic data preparation; 
Michigan Imputation Server (https://imputationserver.sph.umich.edu/) for impuation; 
FUMA version v1.3.6(https://fuma.ctglab.n/l) for annotation of genomic locus;  
MAGMA v1.08 (https://ctg.cncr.nl/software/magma/, also implemented in FUMA) for gene analysis; 
GCTA v1.93.2(http://cnsgenomics.com/software/gcta/) , LDSC v1.0.1(https://github.com/bulik/ldsc/), condFDR/conjFDR (https://github.com/
precimed/pleiofdr/) ,and python v3.10 for genetic association analysis; 
STRING (https://www.stringdb.org/) for protein-protein interaction; 
METAL version 2011-03-25 (http://www.sph.umich.edu/csg/abecasis/Metal/) for meta analysis of GWAS summary statistics; 
SAIGE-GENE+ (https://saigegit.github.io/SAIGE-doc/) for WES analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The full summary statistics of multivariate and univariate GWAS for hypothalamus can be found at the figshare website (https://figshare.com/projects/
GWAS_summary_data_of_hypothalamus/165589). Summary statistics of regional brain measures are available at https://www.med.unc.edu/bigs2/data/gwas-
summary-statistics/. Summary statistics of neuropsychiatric traits and disorders for genetic correlation analysis were summarized in Supplementary Data 38, 39. 
Summary statistics of eQTL were obtained through eQTLGen website (https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/2019-12-11-cis-eQTLsFDR-
ProbeLevel-CohortInfoRemoved-BonferroniAdded.txt.gz ). The individual-level imaging and genetic data used in the present study are available through UKB 
(https://biobank.ndph.ox.ac.uk/showcase/index.cgi, accession number 19542), ABCD (https://nda.nih.gov/data_dictionary.html?source=ABCD%2BRelease%
2B4.0&submission=ALL), and IMAGEN (https://imagen2.cea.fr/account_manager). Data were used under license and can be accessed through application.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We took sex into considerations in our study and our findings could apply to both male and female. Sex in the UK Biobank, 
ABCD and IMAGENwas determined based on self-reporting data via questionaire, and all included  participants gave written 
informed consent for sharing of individual-level data. 

Population characteristics This study included 32956 white British participants from UKB (17368 [54.2%] female; mean [SD] age, 64.3 [7.5] years), 4321 
European participants from ABCD .(2014 [46.6%] female; mean [SD] age, 9.90 [0.71] years) , and  1685 European participants 
from IMAGEN ((859 [51.1%] female; mean [SD] age, 14.0 [0.46] years)) . Baseline descriptions can be found in S-data1. 
Statistics were reported with Mean (SD) for continuous variables and number (percentage) for categorical variables. 

Recruitment The UKB enrolled the participants aged 40-69 years between 2006 and 2010 for baseline assessments in 22 centers across 
the UK. The assessment visits comprised interviews and questionnaires covering lifestyles and health conditions, physical 
measures, biological samples, imaging, and genotyping. The database is linked to national health datasets, including primary 
care, hospital inpatient, death, and cancer registration data.  The ABCD study is a new and ongoing project of very substantial 
size and scale involving 21 data acquisition sites, aming  to recruit 11,500 children and follow them for ten years with 
extensive assessments at multiple timepoints.The IMAGEN study is the multicentre genetic-neuroimaging study with 
comprehensive behavioural and neuropsychological characterization, functional and structural neuroimaging and genome-
wide association analyses of 2000 14-year-old adolescents.

Ethics oversight This study is based on publicly available data with different levels of accessibility. The study was approved by the Institutional 
Review Boards of all participating institutions and was carried out in accordance with the approved protocols.The UK Biobank  
was approved by the National Health Service National Research Ethics (ref: 11/NW/0382). The ABCD study was approved by 
the central Institutional Review Board (IRB) at the University of California, San Diego, and the IMAGEN study was approved by 
the institutional ethics committee of King’s College London, University of Nottingham, Trinity College Dublin, University of 
Heidelberg, Technische Universität Dresden, Commissariat à l’Energie Atomique et aux Energies Alternatives, and University 
Medical Center at the University of Hamburg. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes, and eligible participants with both genetic and imaging data were included as 
much as possible. 

Data exclusions Participants without genetic data, MRI T1 data, and  covariates available  were excluded. 
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Replication Multivariable GWASes were also performed in UKB non-white British population, ABCD, and IAMGEN cohorts to replicate the findings from 

UKB white British population.

Randomization Covariates including age, age squared, sex, scanning site, intracranial volume, and the first 10 genetic principal components were adjusted in 
the study.

Blinding Blinding was not applicable to this study as this study is observational. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Genome-wide association analysis using phenotypes  derived from structural MRI

Design specifications UK Biobank designed the imaging acquisition protocals including 6 modalities, covering structual, diffusion and 
functional iamging. In the current study, T1-weighted structural image was used and the image was acquired using 
straight sagittal orientation for 5 minutes.

Behavioral performance measures In bivariate GCTA-GREML  analysis  to explore the genetic correlation between hypothalamic measures and function-
related traits. Five different categories of phenotypes were tested including sleep and circadian rhythms (chronotype, 
field 1180; daytime napping, field 1190; sleep duration, field 1160), risky behaviours (cigarettes per day, field 3456 and 
2887; drinks frequency, field 1558; age at first sexual intercourse, field 2139), learning and cognition (reaction time, 
field 20023; incorrect pair matches in round, field 399), food intake and satiety (recent poor appetite or overeating, 
field 20511; body mass index, field 21001), and water intake and cardiovascular activity (systolic blood pressure, field 
4080; diastolic blood pressure, field 4079; heart rate, field 102). 

Acquisition

Imaging type(s) T1-weighted structural imaging

Field strength 3T

Sequence & imaging parameters UKB: 
Resolution: 1×1×1 mm 
Field-of-view: 208×256×256 matrix 
Duration: 5 minutes 
3D MPRAGE, sagittal, in-plane acceleration iPAT=2, prescan-normalise 
 
ABCD: 
Matrix: 256×256 
Slices: 176 (Siemens), 225 (Philips), 208 (GE) 
FOV: 256×256 (Siemens,GE), 256×240 (Philips) 
%FOV phase: 100% (Siemens,GE), 93.75% (Philips) 
Resolution: 1.0×1.0×1.0 mm3 
TR: 2500 ms (Siemens,GE), 6.31 ms (Philips) 
TE: 2.88 ms (Siemens), 2.9 ms (Philips), 2 ms (GE) 
TI: 1060 ms 
Flip Angle: 8 deg 
Parallel Imaging: 2x (Siemens,GE), 1.5 x 2.2 (Philips) 
MultiBand Acceleration: Off 
Phase partial Fourier: Off (Siemens,GE), NA (Philips) 
Acquisition Time: 7min12sec (Siemens), 5min38sec (Philips), 6min09sec (GE) 
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IMAGEN: 
TR: 2300 ms 
TE: 2.8 ms 
TI: 900 ms 
Parallel imaging/factor: N 
NSA: 1 
Scan duration:~ 09:20 
Excitation flip angle (degrees): 8-9 
2D/3D: 3D 
Matrix freq dirn: 256 
Matrix phase dirn: 256  
Matrix size(3D): 160,170  
FOV frequency: 28.0 cm 
FOV phase: 94%  
Slice thickness: 1.1 mm 
Slice orientation: Sagittal 
Slice acquisition direction: Left->Right

Area of acquisition The whole brain were acquired, while the hypothalamic structures were the analytic targets .

Diffusion MRI Used Not used

Preprocessing

Preprocessing software With T1-weighted MRI scans from the three cohorts, the whole hypothalamus and its subregions including anterior superior, 
anterior inferior, superior tuberal, inferior tuberal, and posterior hypothalamus were then delineated using an automated 
segmentation tool developed by Billot B. et al. (https://github.com/BBillot/hypothalamus_seg)

Normalization see above

Normalization template see above

Noise and artifact removal see above

Volume censoring see above

Statistical modeling & inference

Model type and settings Generalized linear models

Effect(s) tested The beta were obtained from GWAS for the generalized linear models

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) An automated segmentation tool developed by Billot B. et al. (https://github.com/BBillot/
hypothalamus_seg) was used to extract the volumes of hypothalamus and its subregions.

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise

Correction False discovery rate (FDR) correction

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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