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Exome sequencing identifies genes 
associated with sleep-related traits

Chen-Jie Fei1,6, Ze-Yu Li    2,3,6, Jing Ning    1,6, Liu Yang1,6, Bang-Sheng Wu1, 
Ju-Jiao Kang    2,3, Wei-Shi Liu1, Xiao-Yu He1, Jia You    2,3, Shi-Dong Chen1, 
Huan Yu1, Zhi-Li Huang4, Jian-Feng Feng    2,3,5, Jin-Tai Yu    1  & 
Wei Cheng    1,2,3 

Sleep is vital for human health and has a moderate heritability. Previous 
genome-wide association studies have limitations in capturing the role 
of rare genetic variants in sleep-related traits. Here we conducted a 
large-scale exome-wide association study of eight sleep-related traits (sleep 
duration, insomnia symptoms, chronotype, daytime sleepiness, daytime 
napping, ease of getting up in the morning, snoring and sleep apnoea) 
among 450,000 participants from UK Biobank. We identified 22 new genes 
associated with chronotype (ADGRL4, COL6A3, CLK4 and KRTAP3-3), daytime 
sleepiness (ST3GAL1 and ANKRD12), daytime napping (PLEKHM1, ANKRD12 
and ZBTB21), snoring (WDR59) and sleep apnoea (13 genes). Notably,  
20 of these genes were confirmed to be significantly associated with sleep 
disorders in the FinnGen cohort. Enrichment analysis revealed that these 
discovered genes were enriched in circadian rhythm and central nervous 
system neurons. Phenotypic association analysis showed that ANKRD12 was 
associated with cognition and inflammatory traits. Our results demonstrate 
the value of large-scale whole-exome analysis in understanding the genetic 
architecture of sleep-related traits and potential biological mechanisms.

Sleep is a vital biological process regulated by the circadian system.  
Chronic sleep disturbances, affecting approximately 30% of  
adults worldwide1, have been linked to a broad spectrum of  
negative consequences, including cardiometabolic diseases, neuro-
psychiatric disorders, immunological dysfunctions and all-cause 
mortality2–5. However, the molecular underpinning of sleep regula-
tion in overall health remains unclear. Family studies have indicated 
that self-reported sleep behaviours have a heritability of 10–45%6,7; 
therefore, conducting genetics studies might offer valuable insights 
into the physiology of sleep and its association with chronic diseases.

Over the past decade, genome-wide association studies (GWAS) 
have identified hundreds of independent loci associated with 
self-reported or device-measured sleep-related traits, including sleep 
duration8–11, insomnia12, excessive daytime sleepiness13, daytime nap-
ping14, chronotype15–17 and snoring18. The most consistently observed 
associations with longer sleep duration include single nucleotide poly-
morphisms (SNPs) located near the PAX8 and VRK2 genes, which have 
been replicated in several studies8–11,19. SNPs near clock genes (PER2, 
PER3 and PATJ), which are involved in the sleep/wake cycle, have been 
identified to be associated with chronotype9,20. These studies have laid 
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First, we performed a single-variant exome-wide association  
analysis to identify genetic loci associated with sleep, adjusting for age, 
sex, body mass index (BMI) and ten principal components. We identi-
fied 75 genetic associations across seven of the sleep-related traits at the 
significance threshold (P < 1 × 10−8) (Fig. 2 and Supplementary Tables 5  
and 6). The corresponding quantile–quantile plots are shown in Sup-
plementary Fig. 2. The identified significant genomic loci mapped to 
60 genes, and 16 of them have not been reported in previous studies  
(Table 1). For insomnia symptoms, two associations were observed at 
the VPS8 locus (rs6766721T, β = 0.037, P = 6.3 × 10−9) and the CNNM2 
locus (rs943037T, β = −0.067, P = 9.0 × 10−9). For chronotype, the 
strongest association was observed at rs1144566T, a missense variant in  
RGS16 (β = 0.078, P = 1.3 × 10−31), which contributed to morning sleep. 
For ease of getting up in the morning, the strongest association was 
rs2653349A, a missense variant in HCRTR2 (β = 0.028, P = 1.7 × 10−26). 
We identified six genes associated with chronotype and ease of getting 
up in the morning, which suggests a close relationship between the two 
phenotypes. The PATJ locus (rs12140153T, β = −0.023, P = 1.5 × 10−14) was 
most closely associated with daytime sleepiness, and rs1876831T in 
CRHR1 (β = −0.027, P = 1.0 × 10−31) was most closely associated with day-
time napping, contributing to less daytime sleepiness and less napping 
during the day, respectively. Only one locus at MSRB3 (rs61921506T, 
β = 0.037, P = 2.5 × 10−10) was associated with snoring. Rs1287581425A 
in CGN (β = 3.32, P = 8.9 × 10−17) was associated with sleep apnoea and 
manifested the largest coefficient. In addition, to validate the signifi-
cance of the 16 genes that were not reported previously, we queried 
the FinnGen online GWAS summary statistics24, and 14 of them were 
found to have significant associations with sleep disorders (Table 1).

Second, we performed the gene-based collapsing test. We used 
LoF and missense variants of each gene to perform the analysis, with 
two MAF thresholds (<1% and <0.1%). In total, we found that seven genes 
were significantly associated with sleep-related traits after Bonferroni 
correction (P < 2.5 × 10−6) (Fig. 3, Table 2 and Supplementary Table 7). 
The corresponding quantile–quantile plots are shown in Supplemen-
tary Fig. 3. Rare variants in PER3 (β = 4.9 × 10−3, P = 6.7 × 10−17), PER2 
(β = 2.0 × 10−2, P = 3.3 × 10−11) and MTNR1B (β = 4.0 × 10−3, P = 1.1 × 10−6) 
were associated with the morning chronotype. PER3 (β = 2.8 × 10−3, 
P = 2.9 × 10−8) and PER2 (β = 1.7 × 10−2, P = 1.7 × 10−9) were also associ-
ated with getting up in the morning easily. ST3GAL1 (β = 7.7 × 10−3, 
P = 1.4 × 10−6) and ENSG00000258603 (β = 1.5 × 10−1, P = 7.6 × 10−9, not 
formally named and not considered in subsequent analysis) were asso-
ciated with more daytime sleepiness. ZBTB21 (β = 1.8 × 10−2, P = 1.1 × 10−6) 
was associated with more napping during the day. WDR59 (β = 2.6 × 10−2, 
P = 4.2 × 10−7) was associated with snoring. In addition, three genes 
were identified after false discovery rate (FDR) correction, including 
CLK4 (associated with the morning chronotype), KRTAP3-3 (associated 
with the evening chronotype) and ANKRD12 (associated with more 
daytime sleepiness and daytime napping). Among these associations, 
those of PER3, PER2 and MTNR1B with the morning chronotype have 
been previously reported by other GWAS17 (Supplementary Fig. 4). In 
addition, all of the genes identified in the gene-based test were found 
to be significantly associated with sleep disorders in the FinnGen study 
(Table 2). Most single variants in genes identified by the gene-based 
collapsing test showed a consistency in effect directions, forming 
long allelic series (Supplementary Table 8). Moreover, the burden of 
the rare variants had the same direction as each variant accumulated.  
In addition, the pleiotropy of sleep-related signals is shown in  
Supplementary Tables 9 and 10, and shared genetic determinants  
were found for chronotype and ease of getting up in the morning.

Sensitivity analysis, leave-one-variant-out analysis and 
conditional analysis
For all identified significant associations, we performed sex-specific 
and ancestry-specific analysis. In the sex-specific analysis, the  
β values of the associations were very similar to the original values, and 

the foundation for unravelling the underlying genetic mechanisms 
involved in sleep regulation.

However, previous GWAS have primarily focused on common vari-
ants (minor allele frequency (MAF) > 1%), which tend to have smaller 
effect sizes. Additionally, many of the identified loci from GWAS are 
mapped to non-coding regions of the genome, posing challenges 
in exploring the underlying mechanisms. In contrast, whole-exome 
sequencing (WES) analysis could overcome these limitations. WES 
data concentrate on protein-coding regions of the genome, providing 
the opportunity to identify rare and ultrarare variants that may not 
be genotyped or may be genotyped and imputed inaccurately21. Cur-
rently, there is a lack of studies using large-scale WES data to investigate 
sleep-related phenotypes. Such analysis may therefore provide a more 
comprehensive understanding of the genetic architecture underlying 
sleep-related traits and guide health improvement strategies.

The WES analysis of sleep we conducted in this study is, to the best 
of our knowledge, the largest analysis of this type performed thus far. 
Through single-variant association tests and gene-based collapsing 
analysis of the WES data from approximately 450,000 UK Biobank 
participants22, we investigated the associations between genetic  
variants and eight sleep-related traits, including sleep duration, 
insomnia symptoms, chronotype, ease of getting up in the morning, 
daytime sleepiness, daytime napping, snoring and sleep apnoea. 
Sixty-eight genes, of which 22 have not been reported in previous 
studies, were identified to be associated with sleep-related traits 
at exome-wide significance, and 20 genes were validated for their 
associations with sleep disorders in the FinnGen cohort. We also 
provided biological insights into the identified genes and estimated 
their genetic burden heritability. Additionally, we performed pathway 
enrichment analysis and a phenome-wide association study (PheWAS) 
to uncover the underlying mechanisms and potential impacts on 
other traits. This study advances our understanding of the genetic 
factors influencing sleep and may guide personalized approaches 
for improving sleep health.

Results
Description of the study population and data
We used phenotypic and genetic data from UK Biobank, including 
exome sequencing data, sleep-related traits (Supplementary Table 1) 
and 249 phenotypes used in the phenome-wide association analysis 
(Supplementary Table 2). The exome sequencing data were put through 
a series of quality control steps (Methods) to remove low-quality  
variants and samples. In the main analysis, about 294,000 white British 
individuals with sleep-related traits were used to perform the associa-
tion tests, with ages from 38 to 72 at enrolment, of which 54.7% were 
female. The sleep-related traits included sleep duration, insomnia symp-
toms, chronotype, ease of getting up in the morning, daytime sleepi-
ness, daytime napping, snoring and sleep apnoea. The demographic 
characteristics of sleep-related traits after exclusion and genetic quality  
control (Methods) are provided in Supplementary Table 3. Finally, 
we obtained a total of 13,553,257 distinct autosomal genetic variants, 
comprising 100,081 common variants (MAF > 1%) and 13,453,176  
rare variants (MAF < 1%). Our overall study design is shown in Fig. 1.

Exome-wide association analysis for sleep-related traits
To identify the degree to which different types of mutations would 
impact sleep, we assessed the associations between sleep-related traits 
and five mutation groups and found that the loss-of-function (LoF) 
variant burden had a significant influence on insomnia symptoms 
(regression coefficient (β) =  0.15; P = 7.4 × 10−5), daytime sleepiness 
(β = 0.01, P = 9.1 × 10−5) and daytime napping (β = 0.02, P = 2.7 × 10−7) 
(Supplementary Fig. 1 and Supplementary Table 4). To further explore 
the relationship between sleep-related traits and coding variants, we 
used SAIGE23 to calculate associations at both the single-variant and 
gene-based levels.
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all genes and variants showed associations with sleep-related traits 
(Supplementary Fig. 5 and Supplementary Tables 11 and 12). In indi-
viduals of white (non-British) ancestry, two associations (PER3 and 
PER2 with chronotype) were nominally significant (P = 1.5 × 10−2 and 
P = 3.0 × 10−2, respectively). Two associations (ANKRD12 with daytime 
napping and PER2 with ease of getting up in the morning) were identi-
fied in individuals of Asian ancestry (P = 1.2 × 10−2 and P = 2.2 × 10−3, 
respectively), and one association (PER3 with ease of getting up in the 
morning) was identified in individuals of Black ancestry (P = 1.7 × 10−2) 
(Supplementary Fig. 6 and Supplementary Tables 13 and 14).

To further assess the stability of the identified associations in the 
gene-based collapsing test, we performed a leave-one-variant-out 
(LOVO) analysis. For 8 of 12 associations, the removal of one variant 
did not affect the overall associations, which implies that these asso-
ciations were driven by a burden of multiple contributing variants. 
After we removed the locus chr1:g.7809893[C/G] from the gene PER3, 
the association with the morning chronotype and ease of getting up 
became less significant (P = 8.4 × 10−3 and P = 2.4 × 10−2, respectively). 
After we removed the locus chr5:g.178608454[T/A] from the gene 
CLK4 and the locus chr17:g.40994058[C/T] from the gene KRTAP3-3, 
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Fig. 1 | Design of the study. Top, data used in the analyses, including sleep-
related traits, exome sequencing data and health-related traits. Second row, 
exome-wide association analysis of sleep-related traits, including single-variant 
association tests, gene-based collapsing tests, replication analysis, sex and 
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biological function analyses of genes identified in the exome-wide analyses, 
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correlation of sleep-related traits. Bottom, phenome-wide association analysis  
of the identified genes.
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the association with chronotype became less significant (P = 1.2 × 10−1 
and P = 2.0 × 10−1, respectively). (Supplementary Figs. 7–11 and Sup-
plementary Table 15). This implies that, in certain cases, a single variant 
might play an important role in the relationship between genes and 
sleep-related traits.

We then performed the conditional analysis to evaluate  
whether the identified genes were independent of nearby common 
variants. First, we ran the common variant (MAF > 0.5%) association 
analysis within the region ±500 kb of the gene. We reran the gene-based 
collapsing analysis for the identified genes, adding the clumped 
common variants as covariates (Methods). After conditioning on 
nearby common variants, the P values of the associations were not 

substantially attenuated, and the effect sizes remained similar. All 
associations examined were significant after undergoing conditional 
analysis (Supplementary Table 16).

Burden heritability of sleep-related traits
Burden heritability regression (BHR) is a method to quantify the herit-
ability explained by the burden of rare coding variants. Weiner et al. 
showed that rare coding variants explain 1.3% of the phenotypic vari-
ance on average25. We first used BHR to estimate the burden heritability 
of eight sleep-related traits. As recommended in BHR, variants were 
stratified into bins according to allele frequency and functional cate-
gories. For ultrarare LoF variants, all sleep-related traits except sleep 
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Fig. 2 | Exome-wide single-variant tests for sleep-related traits. Manhattan 
plots showing the results of the tests for single variants associated with  
sleep-related traits, including sleep duration, insomnia symptoms, chronotype, 
ease of getting up in the morning, daytime sleepiness, daytime napping,  
snoring and sleep apnoea. The x axis indicates the positions of the single  
variants on 22 chromosomes, and the y axis indicates the −log10 of the  
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significant associations (P < 1 × 10−8). The genes corresponding to the variants 

significantly associated with sleep-related traits are marked on the plots, with 
red representing new identified genes. Only the top signals and new genes in 
each chromosome are tagged for chronotype, ease of getting up in morning 
and daytime napping. Single-variant association analyses were performed 
using SAIGE-GENE+ software. The P values shown are two-sided and unadjusted 
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duration had significant non-zero burden heritability ranging from 
0.10% to 0.42% (Fig. 4a and Supplementary Table 17). For rare LoF vari-
ants, sleep duration (h2 = 0.14%, s.e. = 0.05%), chronotype (h2 = 0.10%, 
s.e. = 0.05%) and sleep apnoea (h2 = 0.26%, s.e. = 0.06%) had significant 
non-zero burden heritability (Fig. 4b and Supplementary Table 17). 
Damaging missense variants explained less burden heritability than 
LoF variants for both ultrarare and rare bins. We aggregated ultra-
rare and rare LoF burden heritability together as total burden herit-
ability and compared it with the common-variant heritability of each  
trait (reported in refs. 9,13,14,17,18,26, using linkage disequilibrium 
score regression27). Insomnia symptoms had the highest total burden 
heritability (h2 = 0.73%, s.e. = 0.08%) and common-variant heritabi-
lity (h2 = 20.6%, s.e. = 1.1%). Burden heritability and common-variant  
heritability of sleep-related traits were correlated, while common  
variants explained a much larger fraction of phenotypic variance  
(mean, 11.5% versus 0.4%) (Fig. 4c and Supplementary Table 18).

We then used BHR to compute the genetic correlations between 
LoF and missense variants across sleep-related traits (Fig. 4d,e and 
Supplementary Table 19). LoF–missense genetic correlations were low 
in sleep apnoea, suggesting that LoF and missense variants in the same 
genes might have divergent phenotypic effects. We also estimated the 
burden genetic correlations across sleep-related traits from ultrarare 
and rare LoF variants (Fig. 4f and Supplementary Table 20). The pair 
of chronotype and ease of getting up in the morning showed a large 
genetic correlation (for ultrarare LoF variants, rg = 64.7%, s.e. = 25.5%; 
for rare LoF variants, rg = 62.0%, s.e. = 32.3%), indicating shared genetic 
architecture between the two traits, which is consistent with the find-
ings in the gene-based collapsing analysis.

Biological functions of sleep-related genes
To characterize the biological properties of the identified genes, we 
first conducted a pathway enrichment analysis. As expected, Gene 
Ontology (GO) enrichment analysis revealed that 68 significant 

genes in single-variant and gene-based tests were enriched in the 
sleep-related ontologies, such as regulation of circadian sleep/wake 
cycle (P = 5.1 × 10−5), circadian sleep/wake cycle process (P = 6.7 × 10−5) 
and circadian sleep/wake cycle (P = 9.6 × 10−5) (Fig. 5a and Supplemen-
tary Table 21).

We then explored the expression of the identified genes in different  
tissues and cell types. First, we performed enrichment analysis on  
68 significant genes in 54 different tissues from GTEx28, and the top 
three significantly enriched tissues were pancreas (P = 9.4 × 10−10), brain 
hippocampus (P = 1.0 × 10−6) and adrenal gland (P = 1.1 × 10−6) (Fig. 5b 
and Supplementary Table 22). Next, we used a single-cell atlas of the 
mouse nervous system29 and performed a one-sided Wilcoxon rank sum 
test comparing the expression of the 68 genes against all remaining 
genes. We found that signals in four parts of the nervous system were 
higher in neuronal cells and the central nervous system than those 
in non-neuronal cells and the peripheral nervous system (Fig. 5c and 
Supplementary Table 23). In addition, brain single-cell RNA sequencing 
(scRNA-seq) data30 were used to analyse the expression of each gene 
in different neuronal cells, revealing high expression levels of PER3 
and ANKRD12 in neuronal cells (Fig. 5d–f and Supplementary Fig. 12).

Phenotypic association with sleep-related genes
To explore the association between sleep genes and a large range of 
phenotypes, we conducted a phenotypic association analysis on 25 
sleep-associated genes (16 significant new genes in the single-variant 
test and 9 significant genes in the gene-based test). The phenotypes we 
used included eight categories (biochemistry, brain structure, cardiac 
function, cardiovascular diseases, cognition, inflammation, lung func-
tion and neuropsychiatric diseases). The results for genes identified in 
the gene-based test are shown in Fig. 6 and Supplementary Table 24.  
We found that ANKRD12 had associations with the widest range of 
traits—for example, fluid intelligence (P = 2.2 × 10−10), total protein 
(P = 1.1 × 10−11), white blood cell count or percentage (for example, 

Table 1 | New exome-wide significant variants associated with sleep-related traits (P < 1 × 10−8)

Trait Chr rsID A0 A1 A1 freq (%) β s.e. P Gene Function P (FinnGen)

Quantitative

Chronotype
1 rs985277 G T 40.0 −0.0138 0.0023 3.72 × 10−9 ADGRL4 Intronic 5.3 × 10−1

2 rs2077061420 C T 4.3 −0.0471 0.0057 8.15 × 10−17 COL6A3 Missense 1.5 × 10−3

Daytime napping 17 rs1879581 T C 18.6 −0.0273 0.0024 6.58 × 10−29 PLEKHM1 Synonymous 8.9 × 10−1

Binary

Sleep apnoea

1 rs369900342 T A 0.007 2.4627 0.3978 5.96 × 10−10 HES4 Missense 4.7 × 10−4

1 rs774775589 G A 0.005 2.6723 0.4638 8.33 × 10−9 PLCH2 Missense 5.3 × 10−5

1 rs1284009203 CA C 0.006 2.9943 0.3749 1.39 × 10−15 C1orf167 Frameshift 1.5 × 10−4

1 rs759605633 T C 0.005 2.5755 0.4357 3.41 × 10−9 CYP2J2 Intronic 6.5 × 10−3

1 rs752253132 G A 0.013 2.1973 0.3501 3.45 × 10−10 ARHGAP29 Splice region variant 2.7 × 10−4

1 rs769644497 G A 0.005 2.6392 0.4568 7.60 × 10−9 UBL4B Missense 4.9 × 10−3

1 rs188506897 G A 0.008 2.4122 0.4188 8.42 × 10−9 CD53 Intronic 3.9 × 10−4

1 rs1287581425 G A 0.004 3.3212 0.3992 8.87 × 10−17 CGN Missense 3.2 × 10−4

1 rs1218957616 A T 0.004 2.9595 0.4747 4.54 × 10−10 FLG-AS1 Intronic, non-coding 
transcript

2.8 × 10−4

1 rs199885325 C T 0.004 3.1108 0.4433 2.27 × 10−12 USH2A Missense 1.3 × 10−4

1 rs200954588 G A 0.004 2.9723 0.4303 4.92 × 10−12 TLR5 Missense 3.3 × 10−3

1 rs766823455 A G 0.004 2.9138 0.4410 3.92 × 10−11 LYST Missense 1.1 × 10−3

1 rs371286986 C T 0.004 2.7215 0.4676 5.86 × 10−9 MTR Intronic 6.6 × 10−5

The association results for the corresponding genes for ‘sleep disorders (combined)’ or ‘sleep apnoea’ in FinnGen are also shown. Single-variant association analyses were performed using 
SAIGE-GENE+ software. The P values shown are two-sided and unadjusted for multiple testing. Positive β values mean that mutation carriers tend to have longer sleep duration, the morning 
chronotype, more daytime sleepiness and more daytime napping; get up in the morning easily; and have a higher risk of insomnia symptoms, snoring and sleep apnoea. Chr, chromosome; A0, 
allele 0; A1, allele 1; A1 freq, allele 1 frequency in the analysed sample.
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neutrophil percentage, P = 3.1 × 10−14) and lung function. PER2 was 
associated with multiple brain regions, from frontal lobe (left middle 
frontal gyrus, P = 3.2 × 10−4; right dorsolateral superior frontal gyrus, 
P = 2.8 × 10−4) to supplementary motor area (left, P = 5.8 × 10−5; right, 
P = 9.2 × 10−6). CLK4 was associated with orbitofrontal cortex, such 
as right posterior orbital gyrus (P = 2.4 × 10−6) and anterior orbital 
gyrus (left, P = 1.5 × 10−4; right, P = 4.9 × 10−5). In addition, WDR59  
was associated with triglycerides (P = 1.1 × 10−4), which may suggest  
that obese people are more likely to have snoring symptoms. The  
results for genes identified in the single-variant test are shown in  
Supplementary Table 25.

Discussion
In this extensive WES analysis, we identified 68 genes significantly 
associated (P < 1 × 10−8 for single-variant tests and FDR Q < 0.05 for 
gene-based tests) with eight sleep-related traits including sleep dura-
tion, insomnia symptoms, chronotype, ease of getting up in the morn-
ing, daytime sleepiness, daytime napping, snoring and sleep apnoea. 
In addition to confirming known sleep-related genes, we identified 
22 genes that have not been reported in previous studies, including 
ADGRL4, COL6A3, CLK4 and KRTAP3-3 associated with chronotype; 
ST3GAL1 and ANKRD12 associated with daytime sleepiness; PLEKHM1, 
ZBTB21 and ANKRD12 associated with daytime napping; WDR59 
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Fig. 3 | Exome-wide gene-based tests for sleep-related traits. Manhattan 
plots showing the results of the tests for genes associated with sleep-related 
traits, including sleep duration, insomnia symptoms, chronotype, ease of 
getting up in the morning, daytime sleepiness, daytime napping, snoring 
and sleep apnoea. Rare variants used in the gene-based collapsing test have 
two different annotation groups (LoF and LoF + missense) and two different 
maximum MAF cut-offs (1% and 0.1%). The x axis indicates the positions of the 
genes on 22 chromosomes, and the y axis indicates the −log10 of the P value for 

each association. The grey dashed line indicates the threshold for significant 
associations using Bonferroni correction (P < 2.5 × 10−6). The genes significantly 
associated with sleep-related traits, using FDR correction, are marked on the 
plots, with red representing new identified genes. Gene-based collapsing 
analyses were performed using SKAT-O tests provided by SAIGE-GENE+ software. 
The P values shown are two-sided and unadjusted for multiple testing. All models 
were adjusted for age, sex, BMI and the top ten ancestral principal components.
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associated with snoring; and HES4, PLCH2, C1orf167, CYP2J2, ARHGAP29, 
UBL4B, CD53, CGN, FLG-AS1, USH2A, TLR5, LYST and MTR associated 
with sleep apnoea. In the validation analysis, we confirmed the associa-
tions of 20 genes with sleep disorders in the FinnGen cohort. In addi-
tion, pathway enrichment analysis revealed that these genes exhibited  
high expression in neurons and were involved in circadian rhythm 
pathways. Through PheWAS analysis, we demonstrated significant 
correlations between ANKRD12 and cognitive decline and inflammatory 
markers, enhancing our understanding of the biological mechanisms 
underlying the circadian cycle, sleep regulation and related disorders.

Our study validated 47 genes previously identified in GWAS 
analysis, and most showed consistent effect directions across mul-
tiple cohorts, including EXD3, HCRTR2, PER3 and PER2 with chrono-
type20, PATJ with daytime napping14 and MSRB3 with snoring18. The 
BHR analysis revealed that the gene-wise burden of rare and ultrarare 
LoF variants explained 0.3% of the phenotypic variance on average 
across sleep-related traits. Additionally, in the conditional analysis, 
we demonstrated a direct relationship between these identified rare 
variants and sleep-related traits, independent of nearby (±500 kb) 
common variants. These findings highlight that the identification 
of rare variants and genes may contribute to a more comprehensive 
genetic landscape of sleep31.

In the single-variant analysis, we have expanded our knowledge 
of the contribution of rare variants to sleep-related traits, going 
beyond the scope of previous GWAS, which mainly covered common 
variants. ADGRL4 encodes a key regulator of angiogenesis, and the 
silence of ADGRL4 affects the Notch pathway32, subsequently leading 
to disturbances in the sleep circadian rhythm and resulting in a late 
chronotype33. In the current study, we identified a significant associa-
tion between the missense variant rs2077061420 in COL6A3 and the 
late chronotype. COL6A3 encodes the α-3 chain of collagen VI, and 
mutations of the gene have been implicated in a continuum of skeletal 
muscle phenotypes, ranging from mild Bethlem myopathy (Mendelian 
Inheritance in Man (MIM) 158810) to severe Ullrich congenital muscular 
dystrophy (MIM 254090)34,35. Recent studies have provided evidence 
suggesting that collagen VI plays a role in mitigating central neuron 
apoptosis and maintaining the dopamine circuitry function36,37, thereby 
contributing to the regulation of circadian rhythm homeostasis38.  

Our findings suggest that a lack of collagen VI may manifest as  
myopathy and circadian clock disruption. Thirteen rare variants were 
found to be correlated with sleep apnoea, indicating that obesity  
and lipid metabolism39,40 (CYP2J2 and LYST) and deficiency in cranio-
facial development41 (ARHGAP29) are risk factors in sleep apnoea.

To identify the effect of the burden of rare genetic variants with 
MAF < 1% on sleep-related traits, we conducted a gene-based collaps-
ing analysis and identified six previously unreported sleep-related 
genes. In the present study, we identified significant associations 
between ST3GAL1 and excessive daytime sleepiness. ST3GAL1 encodes 
β-galactoside α2-3 sialyltransferase, which is involved in terminal sia-
lylation in ganglioside biosynthesis42, and deficiency of gangliosides 
in the central nervous system contributes to neuropsychiatric diseases 
and narcolepsy43. ANKRD12 was another gene significantly associated 
with daytime sleepiness and daytime napping, and previous GWAS or 
proteomics studies have revealed that ST3GAL1 and ANKRD12 are risk 
genes for bipolar disorder44 and the negative symptoms of schizophre-
nia45,46, suggesting a genetic correlation between daytime dozing and 
neuropsychiatric diseases9. In the PheWAS analysis, we also found that 
ANKRD12 was significantly associated with cognitive decline and serum 
inflammatory markers, providing us insights into targets for improv-
ing daytime sleepiness symptoms. For chronotype, KRTAP3-3 (associ-
ated with the late chronotype) and CLK4 (associated with the early 
chronotype) could be potential clock genes; however, the underlying 
mechanisms remain to be further explored. We identified a significant 
link between snoring and WDR59, which encodes a component of the 
GATOR2 complex, recognized for its role in activating mTORC147, and 
mTORC1 orchestrates lipid biosynthesis through its interaction with 
the sterol responsive element binding protein transcription factor48. 
In the PheWAS analysis, we found a connection between WDR59 and 
increased triglyceride levels, which implies its relationship with obesity 
and offers insights into the genetic connection between snoring and 
lipid metabolism or obesity18. However, the effect of WDR59 on snoring 
remained significant after adjusting for BMI, suggesting the existence 
of other mechanisms that require further investigation. These findings 
highlight the value of exome sequencing in identifying rare and coding 
genes with crucial roles in sleep-related traits, as well as facilitating 
potential mechanistic exploration.

Table 2 | Genes associated with sleep-related traits at FDR Q < 0.05

Trait Chr Gene Group Max MAF MAC β (95% CI) P P for sleep disorders 
(FinnGen)

Quantitative

Chronotype

1 PER3 LoF + missense 0.01 3,850 0.005 (0.004, 0.006) 6.66 × 10−17 7.5 × 10−4

2 PER2 LoF 0.001 142 0.020 (0.014, 0.026) 3.33 × 10−11 4.7 × 10−4

5 CLK4 LoF + missense 0.01 3,637 0.003 (0.002, 0.004) 3.25 × 10−6 6.6 × 10−4

11 MTNR1B LoF + missense 0.01 2,109 0.004 (0.002, 0.006) 1.09 × 10−6 2.8 × 10−3

17 KRTAP3-3 LoF + missense 0.01 286 −0.006 (−0.010, −0.002) 8.46 × 10−6 2.4 × 10−4

Daytime sleepiness
8 ST3GAL1 LoF + missense 0.001 244 0.008 (0.004, 0.011) 1.35 × 10−6 5.5 × 10−4

18 ANKRD12 LoF 0.001 186 0.009 (0.005, 0.013) 4.80 × 10−6 2.1 × 10−4

Ease of getting up in 
the morning

1 PER3 LoF + missense 0.01 3,858 0.003 (0.002, 0.004) 2.93 × 10−8 7.5 × 10−4

2 PER2 LoF 0.001 143 0.017 (0.011, 0.022) 1.74 × 10−9 4.7 × 10−4

Daytime napping
18 ANKRD12 LoF 0.001 188 0.010 (0.006, 0.014) 3.19 × 10−6 2.1 × 10−4

21 ZBTB21 LoF 0.001 64 0.018 (0.011, 0.025) 1.10 × 10−6 1.2 × 10−3

Binary

Snoring 16 WDR59 LoF 0.001 291 0.026 (0.016, 0.035) 4.22 × 10−7 3.9 × 10−5

The association results for the corresponding genes for ‘sleep disorders (combined)’ in FinnGen are also shown. Gene-based collapsing analyses were performed using SKAT-O tests provided 
by SAIGE-GENE+ software. The P values shown are two-sided and unadjusted for multiple testing. Positive β values mean that mutation carriers tend to have longer sleep duration, morning 
chronotype, more daytime sleepiness and more daytime napping; get up in the morning easily; and have a higher risk of insomnia symptoms, snoring and sleep apnoea. Gene names in 
boldface indicate that the gene has not been previously reported in sleep GWAS. MAC, minor allele count; CI, confidence interval.
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Our study also explored the biomedical mechanisms of these 
sleep-related genes. GO pathway enrichment analysis validated the  
significant association of the identified genes with circadian  
sleep/wake cycle and rhythmic behaviour49. Furthermore, these genes 
exhibited a significant correlation with magnesium ion homeostasis, 
aligning with previous animal research findings that reveal the crucial 
role of brain interstitial magnesium ion concentration in regulating 
the sleep/wake cycle50. A previous clinical study demonstrated that 
magnesium supplementation effectively enhances sleep quality51, 
and our findings provide promising insights for advancing targeted 
therapeutic interventions aimed at addressing sleep disorders from 
a genetic perspective. In addition, tissue and single-cell expression 
analysis were conducted on 68 sleep-associated genes, revealing  
high expression in central nervous system neurons. The elevated 
expression of sleep-related genes in the hippocampus provides 
a genetic foundation supporting synaptic remodelling in the 

hippocampus during sleep and the association between weakened 
circadian rhythms and increased dementia risk in elder individuals52–54. 
Our research provides genetic insights for future studies exploring  
the mechanisms underlying the hypothesized neural network  
involved in the sleep/wake cycle. Furthermore, our results demon-
strate that these genes are enriched in the pancreas. This finding sub-
stantiates previous research from a genetic perspective, which has  
shown that heightened GLP-1 and insulin secretion in the pancreas 
directly triggers the upregulation of the PER1 and PER2 genes in  
the liver, consequently instigating the synchronization of the  
circadian clock55,56.

In addition, our study used gene-based collapsing analysis and 
BHR to explore the shared genetic architecture between sleep-related 
traits and the identified relationships between snoring, shorter sleep 
duration and insomnia symptoms, consistent with previous genetic and 
phenotypic correlation findings9. We also observed a strong genetic 
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correlation between the early chronotype and getting up easier in the 
morning, indicating a shared genetic basis involving genes such as 
EXD3, EIF4G3, HCRTR2, PER3, PER2, PREPL and SLC3A1, revealing shared 
biological mechanisms underlying the regulation of circadian rhythm 
for these two traits.

The strength of our study is its large-scale WES analysis of sleep- 
related traits, applying both single-variant and gene-based analysis 
and enhancing the completeness of the genetic landscape underlying 
sleep regulation. Moreover, through pathway enrichment and PheWAS 
analysis, we have gained better insights into the biological mecha-
nisms underlying sleep regulation and the shared genetic correlations  
with other phenotypes, providing a solid foundation for the treatment 
of sleep disorders. However, the current study has several poten-
tial limitations. First, our primary study included exome data from  
white British participants in UK Biobank, and the ancestry-specific 

analysis showed insignificant gene–phenotype associations in other 
ethnic groups due to smaller sample sizes. Additionally, the FinnGen 
validation cohort employed a metric based on sleep disorders, dis-
tinct from the subjective sleep-related traits explored in our current 
study, and rare variants were not captured in GWAS. Future analysis 
could use large-scale whole-exome data from diverse ethnic popu-
lations encompassing subjective sleep characteristics, to validate  
and extend the findings. Second, self-reported sleep characteris-
tics may cause recall bias and not fully represent the objective sleep 
conditions. Subsequent research could perform whole-exome asso-
ciation analysis on device-measured sleep para meters57. Third, the 
UK Biobank population predominantly consists of middle-aged and 
relatively healthy individuals58–60, which potentially inflates genetic 
effects for healthy sleep characteristics and attenuates those for sleep 
disturbances.
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The P values shown are two-sided and unadjusted for multiple testing. c, Relative 
expression of sleep-associated genes in single-cell data from the mouse central 

nervous system. Each dot shows the P value from a one-sided Wilcoxon rank 
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genes and all other genes in a single cell type. The dots are stratified by four 
anatomical locations. d, Uniform manifold approximation and projection 
(UMAP) visualization of scRNA-seq data described previously30. The colour of 
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plot showing the expression level of PER3 in different cell types. f, Feature plot 
showing the expression level of ANKRD12 in different cell types.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-023-01785-5

In summary, our study identified 22 newly discovered genes sig-
nificantly associated with sleep-related traits and demonstrated their 
significant associations with psychiatric, cognitive, metabolic and 
inflammatory traits. The results advance our understanding of the 
underlying biological mechanisms involved in sleep regulation and 
its profound impact on human health, offering promising avenues for 
precision medicine.

Methods
Study population and phenotypes
UK Biobank is a large prospective study with phenotypic and genetic 
data on approximately 500,000 participants, aged 38–72 years at 
recruitment61. The UK Biobank cohort was approved by the North West 
Multi-centre Research Ethics Committee (https://www.ukbiobank.
ac.uk/learn-more-about-uk-biobank/about-us/ethics), which provided 
oversight for this study. Written informed consent was obtained from 
all participants. The data used in the analysis contained demographic 
characteristics, sleep-related traits, biochemistry, brain structure, cardio-
vascular diseases, cognition, cardiac function, inflammation, neuropsy-
chiatric diseases and lung function. Sleep-related traits used in the study 
included sleep duration, insomnia symptoms, chronotype (morning or 
evening person), ease of getting up in the morning, daytime sleepiness, 
daytime napping, snoring and sleep apnoea (Supplementary Table 1). 
This study was conducted under project application number 19542.

For sleep duration, we removed individuals whose duration was 
less than 3 h or greater than 18 h. For all sleep-related traits, we excluded 
sleep medication users and shift workers (Supplementary Methods). 
The demographic characteristics of the participants with sleep-related 
traits after exclusion and genetic quality control (Supplementary 
Methods) are provided in Supplementary Table 3. Details about other 
phenotypic data, which were used in the phenome-wide association 
analysis, are provided in Supplementary Table 2.

Exome sequencing and quality control
WES was conducted on 454,756 participants from UK Biobank22. The 
IDT xGen Exome Research Panel v.1.0 was used to capture the exomes, 
and the sequencing protocols have been described in detail elsewhere21. 
In addition to the quality control that was performed centrally, we 
applied extensive genotype-level, variant-level and sample-level quality  
control procedures, similar to the previous study62, to ensure a 
high-quality dataset, for which the details are provided in the Supple-
mentary Methods. Briefly, we split multi-allelic sites into bi-allelic sites 
in our analysis and removed the calls that had a low genotype quality and 
extremely low or high genotype depth. We next removed monomorphic 
variants in the final dataset and those that failed the filters (call rate, 
≤90%; P ≤ 10−15 in the liberal Hardy–Weinberg equilibrium test). For the 
sample quality control, we removed the samples that had withdrawn their 
consent, were duplicates, had discordance between self-reported and 
genetically inferred sex, and had irrational call rates or additional metrics. 
We also excluded any individuals related at the third degree or closer on 
the basis of the KING-robust algorithm (kinship coefficient threshold, 
0.0442; Supplementary Methods). Finally, we included 326,788 white 
British individuals in the main exome-wide association analysis.

Variant annotation
Variants were filtered to identify those that were rare (MAF < 1%), and 
they were annotated using SnpEff63. The most severe consequence for 
each gene transcript was retained. We then grouped variants anno-
tated as stop gained, start lost, splice donor, splice acceptor, stop lost 
or frameshift into LoF variants. Likely deleterious missense variants 
were defined as those predicted consistently as deleteriousness in 
SIFT64, PolyPhen2 HDIV, PolyPhen2 HVAR65, LRT66 and MutationTaster67. 
Variants were collapsed for each gene for the gene-based collapsing 
test. Each LoF and missense variant gained a score from the pLI68,69 or 
REVEL70 quantitative algorithm accordingly.
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Fig. 6 | Phenome-wide association of sleep-related genes. Associations 
between genes identified in gene-based tests and a wide range of phenotypes, 
including eight categories (biochemistry, brain structure, cardiac function, 
cardiovascular diseases, cognition, inflammation, lung function and 
neuropsychiatric diseases). The y axis indicates the −log10 of the P value for each 
association. The P values shown are two-sided and unadjusted for multiple 
testing. The red solid line indicates the threshold for significant associations 
using Bonferroni correction (P < 2.2 × 10−5), and the red dashed line indicates 
the threshold using FDR correction (P < 1.5 × 10−3). The colour of each point 
represents the category, and the shape represents the gene. SKAT-O tests were 
used for gene-based analyses, and the models were adjusted for age, sex and 

the top ten ancestral principal components. Cuneus_L, left cuneus; FEV1, forced 
expiratory volume in 1 second; FEV1_Best, best measure of FEV1; FEV1_predperc, 
predicted percentage of FEV1TP, total protein; Frontal_Mid_2_L, left middle 
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lymphocyte percentage; LYM, lymphocyte count; MON%, monocyte percentage; 
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Effects of genetic variants on sleep-related traits
To explore whether mutations of different types or different severity 
within the same type can impact sleep traits to different degrees, we 
calculated the associations between the number of mutations in dif-
ferent groups and sleep traits. First, we selected genes with a pLI score 
greater than 0.9. The pLI score ranges from 0 to 1 for the most tolerant to 
the most intolerant genes, and a pLI score of >0.9 indicates that a gene 
is very likely to be intolerant to LoF68,69. We then grouped the missense 
mutations in these genes into four categories according to the REVEL 
score (<0.25, 0.25–0.5, 0.5–0.75, ≥0.75). The REVEL score for an indi-
vidual missense variant ranges from 0 to 1, representing the likelihood 
that the variant is disease-causing70. Finally, we calculated the total 
number of mutations in LoF and four missense variant groups in these 
genes to reflect the burden of variants and employed linear and logistic 
models to test the associations between the burden and sleep traits.

Exome-wide association analysis
To identify genetic variation relevant to sleep-related traits, we per-
formed single-variant association tests and gene-based collapsing 
tests, using SAIGE-GENE+ software23. SAIGE-GENE+ can test rare  
variants and ultra-rare variants (ultra-rare variants are collapsed to  
a pseudo marker) together, which reduces the data sparsity due to  
the effects of ultra-rare variants. In the single-variant association test, 
we utilized all variants with minor allele count ≥20. In the gene-based 
collapsing test, we applied two different maximum MAF cut-offs (1% and 
0.1%) and two different variant annotation groups (LoF and LoF + mis-
sense) to perform SKAT-O tests. The relative coefficient cut-off of 0.05 
for the sparse genetic relationship matrix (GRM) for the variance ratio 
estimation was used in the collapsing test. For quantitative traits, we 
used the inverse normalization. In both the single-variant test and the 
gene-based collapsing test, all models were adjusted for age, sex, BMI 
and the top ten ancestral principal components. P < 1 × 10−8 was consid-
ered significant in the single-variant association test, and P < 2.5 × 10−6 
was considered significant in the gene-based collapsing test.

Sensitivity analysis for sex and ancestry
For all identified significant associations, we ran a number of sensitiv-
ity analyses. First, we performed the single-variant association and 
gene-based collapsing tests in different sexes to evaluate whether 
the results were impacted by sex. Second, we performed analyses  
on individuals of white (non-British), mixed, Asian and Black ancestry  
(UKB Field 21000) to evaluate whether significant associations  
were consistent across ethnicities.

LOVO analysis
To evaluate the robustness of significant associations in the gene-based 
collapsing test, we performed the LOVO analysis. Within each itera-
tion, we performed the collapsing test upon removal of one variant. 
This procedure was repeated iteratively throughout the analysis 
and obtained multiple P values. When the P value obtained from the  
LOVO analysis differed significantly from the original P value, it  
was demonstrated that the deleted variant had a large impact on the 
association result—in other words, the variant was more important.

Conditional analysis adjusting for nearby common variation
To explore whether the identified rare signals were independent of 
nearby common variants, we reran the gene-based collapsing analy-
sis of the significant genes, adjusting for the common variants in the 
region. First, we ran the common variant (MAF > 0.5%) association 
analysis in the genomic regions, which were 500 kb upstream and down-
stream of the significant genes. In the analysis, we used the software 
PLINK v.2.0 (https://www.cog-genomics.org/plink/2.0/) to perform 
genome-wide association analysis, and genotype data from the UK 
Biobank v.3 imputation (Supplementary Methods). We then clumped 
the results with cut-offs of P < 1 × 10−5 and r2 < 0.01. Finally, we reran the 

gene-based collapsing analysis of the identified genes with the adjust-
ment of the clumped common variants.

Replication of identified signals
To replicate our identified signals in the analysis, we used the FinnGen 
cohort to verify the associations. The FinnGen cohort is a large Finnish  
biobank, including 342,499 individuals with genotype data and dig-
ital health record data24. The details of the imputation and quality 
control for the genotype data were described previously24. We used 
genome-wide association analysis summary results, which were pub-
licly available (https://r9.finngen.fi/), to find associations between the 
identified genes and sleep. GWAS summary statistics on ‘sleep disor-
ders (combined)’ were used for the validation of seven self-reported 
sleep-related traits and ‘sleep apnoea’ (G6_SLEEPAPNO) for sleep 
apnoea. The neurological endpoint ‘sleep disorders (combined)’ in 
FinnGen included sleep disorders (F5_SLEEP), sleep apnoea (G6_SLEE-
PAPNO), narcolepsy and cataplexy (G6_NARCOCATA), and other sleep 
disorders (G6_SLEEPDISOTH). A detailed description of each endpoint 
can be accessed through https://risteys.finregistry.fi/endpoints/. The 
P value of another locus in the same gene was used for validation if a 
rare locus was not captured in the GWAS of FinnGen.

Burden heritability and burden genetic correlation
GWAS have identified hundreds of independent loci associated with 
sleep disturbance traits, and heritability explained by common variants 
across sleep traits has also been estimated. However, the contribution 
of rare coding variants to heritability is unclear. We used BHR25 (https://
github.com/ajaynadig/bhr) to estimate the heritability explained by 
the gene-wise burden of rare coding variants across sleep traits. As 
recommended in BHR, the variants were stratified into bins according 
to allele frequency and functional categories. Ultrarare was defined as 
MAF < 1 × 10−5, and rare was defined as 1 × 10−5 ≤ MAF < 1 × 10−3. Func-
tions of the variants were defined in the variant annotation section. 
All BHR analyses were run with the baseline file provided by ref. 25. The 
variant-level summary statistics derived from SAIGE-GENE+ outputs 
were used, and effect sizes of quantitative traits were obtained directly 
from SAIGE-GENE+ outputs, while effect sizes of binary traits were 
calculated using allele frequency among cases and controls.

Univariate BHR analysis was performed to estimate the burden  
h2 of each sleep trait, and we aggregated ultrarare and rare LoF burden 
heritability together as total burden heritability and compared it with 
the common-variant heritability of each trait, which was obtained using 
linkage disequilibrium score regression27. Bivariate BHR analysis was 
then used to compute the genetic correlation rg. The burden genetic 
correlation between LoF and missense variants within each sleep trait 
was estimated. Burden genetic correlations across sleep traits using 
ultrarare and rare LoF variants were also obtained.

Functional enrichment analysis and tissue expression
We used the R package clusterProfiler71,72 to perform the enrichment 
analysis of the 68 genes that were identified in the single-variant asso-
ciation tests and the gene-based collapsing tests. GO was selected as 
the gene set database to perform the enrichment analysis. GO terms 
were categorized as Biological Process, Cellular Component and 
Molecular Function. To gain more insight into how genes may influ-
ence sleep-related traits, we examined the enrichment of 68 genes in 
54 different tissues from GTEx28 using FUMA73.

Single-cell expression
For the single-cell expression analysis, we first used data from a 
single-cell atlas of the mouse nervous system based on the RNA 
sequencing of half a million cells29 to prioritize cell types as possibly 
involved in sleep-related traits. Cells from the mouse nervous system 
were clustered into 265 cell types. Similar to ref. 74, we downloaded 
the summary expression data, and we rescaled the expression of each 
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gene into Z-scores, which had a mean of 0 and a standard error of 1, to 
enable comparisons of genes between clusters. Analysis was restricted 
to 17,434 mouse genes that could be mapped to equivalent human 
protein-coding genes. For each cell type, we performed a one-sided 
Wilcoxon rank sum test comparing the expression Z-scores of the  
68 sleep-associated genes against the values of all remaining genes. 
We report the P values of these 265 tests in Supplementary Table 23. 
We then subdivided these cell types into neurons and non-neurons  
and by region (central nervous system and peripheral nervous  
system) to show the enriched expressions of sleep-associated genes 
in neurons.

Second, we used brain scRNA-seq data from Garcia et al. in the 
Gene Expression Omnibus database with the accession ID GSE173731 
(ref. 30). The scRNA-seq data were generated with brain temporal 
cortex tissues of individuals with refractory epilepsy, and all cell types 
within the brain were sequenced30. We used the R package Seurat to 
perform the main analysis and visualization75. The clustering and  
annotation of brain scRNA-seq data were conducted using the metadata 
files provided by Garcia et al.30.

Phenome-wide association analysis
We performed PheWAS between the identified genes and various 
phenotypes (Supplementary Table 2). In our analysis of diseases, 11 
neuropsychiatric diseases and 6 cardiovascular diseases were analysed. 
In our analysis of continuous phenotypes, 10 cognition tasks, 10 inflam-
matory traits, 29 blood biochemistry traits, 166 grey matter measures, 8 
cardiac function measures and 9 lung function measures were analysed. 
PheWAS of the genes identified in the single-variant and gene-based 
collapsing tests were analysed. For genes in the single-variant test, we 
used linear or logistic models to find associations between significant 
variants and phenotypes. For genes in the collapsing test, we per-
formed SKAT-O tests between significant genes and phenotypes. All 
models were adjusted for age, sex and the top ten ancestral principal 
components.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The main data, including the individual-level phenotypic and genetic 
data used in this study, were accessed from UK Biobank under appli-
cation number 19542 and are available through UK Biobank (https://
www.ukbiobank.ac.uk/). Summary GWAS statistics of FinnGen were 
obtained through https://r9.finngen.fi/. The single-cell sequencing 
data from the human brain were obtained from the Gene Expression 
Omnibus database (GSE173731). The single-cell sequencing data from 
the mouse central nervous system were obtained from the Mouse Brain 
Atlas (http://mousebrain.org/adolescent/).

Code availability
The code used for single-variant and gene-based analysis is an adap-
tation of the R package SAIGE-GENE+ v.1.1.6.2 (https://github.com/
saigegit/SAIGE/). Quality control of individual-level data was per-
formed using Hail v.0.2 (https://hail.is) and PLINK v.2.0 (https://www.
cog-genomics.org/plink/2.0/). Variant annotation was performed 
using SnpEff v.5.1 (https://pcingola.github.io/SnpEff/). Burden herita-
bility estimation was performed using BHR v.0.1.0 (https://github.com/
ajaynadig/bhr/). The analysis and visualization of scRNA-seq data were 
performed using Seurat v.4.3.0 (https://github.com/satijalab/seurat/). 
GO enrichment analysis was performed using clusterProfiler v.4.2.2 
(https://github.com/YuLab-SMU/clusterProfiler/). Tissue expression 
enrichment analysis was performed using FUMA v.1.5.6 (https://fuma.
ctglab.nl/). Custom scripts for the analyses in this paper are available 
at https://github.com/cjfei18/sleep_wes.
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Data collection No software was involved in data collection (data used is all directly available from UKB and FinnGen as described in detail in the paper).

Data analysis The code used for single-variant and gene-based analysis is an adaptation of the R package SAIGE-GENE+ v.1.1.6.2 (https://github.com/
saigegit/SAIGE/). Quality control of individual-level data was performed using Hail v.0.2 (https://hail.is) and PLINK v.2.0 (https://www.cog-
genomics.org/plink/2.0/). Variant annotation was performed using SnpEff v.5.1 (https://pcingola.github.io/SnpEff/). Burden heritability 
estimation was performed using BHR v.0.1.0 (https://github.com/ajaynadig/bhr/). Analysis and visualization of single-cell RNA sequencing data 
was performed using Seurat v.4.3.0 (https://github.com/satijalab/seurat/). Gene Ontology enrichment analysis was performed using 
clusterProfiler v.4.2.2 (https://github.com/YuLab-SMU/clusterProfiler/). Tissue expression enrichment analysis was performed using FUMA 
v.1.5.6 (https://fuma.ctglab.nl/). Custom scripts for the analyses in this paper are available at https://github.com/cjfei18/sleep_wes. Details of 
specific software and references can be found within text in the relevant Methods and Supplementary Information sections.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The individual-level phenotypic and genetic data used in the present study are available from UKB with restrictions applied. Data were used under the application 
number 19542 and are thus not publicly available. Access to the UKB data can be requested through a standard protocol (https://www.ukbiobank.ac.uk/enable-
your-research). Summary GWAS statistics of FinnGen were obtained through https://r9.finngen.fi/. The single-cell sequencing data of human brain were obtained 
from GEO database (GSE173731). The single-cell sequencing data of mouse central nervous system were obtained from Mouse Brain Atlas (http://mousebrain.org/
adolescent/).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We took sex into consideration in our study and our findings could apply to both males and females. Sex (UKB Field ID 31) in 
the UK Biobank was acquired from central registry at recruitment, and all included participants gave written informed 
consent for sharing of individual-level data.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Ethnic background (UKB Field ID 21000) was used to include the white British participants in the main analysis. Participants 
with White (non-British), Mixed, Asian, and Black ancestry were included in the sensitivity analysis.

Population characteristics In the main analysis, about 294,000 white-British individuals with sleep-related traits were used to perform association tests, 
with ages from 38 to 72 at enrollment, of which 54.7% were female. The baseline demographic data of participants was 
shown in Supplementary Table 3.

Recruitment The UK Biobank enrolled the participants aged 38-72 years between 2006 and 2010 for baseline assessments in 22 centers 
across the UK. The assessment visits comprised interviews and questionnaires covering lifestyles and health conditions, 
physical measures, biological samples, imaging, and genotyping. The database is linked to national health datasets, including 
primary care, hospital inpatient, death, and cancer registration data.

Ethics oversight The UK Biobank has approval from the North West Multi-centre Research Ethics Committee (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/about-us/ethics) as a Research Tissue Bank approval and provides oversight for this study. 
Written informed consent was obtained from all participants. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes, and eligible participants with both genetic and phenotypic data were 
included as much as possible.

Data exclusions Participants without whole-exome sequencing data and sleep traits data, and those who failed to pass quality control were excluded. Sleep 
medication users and shift workers were also excluded. Details of data quality control were provided in Methods.

Replication The GWAS summary statistics data from the FinnGen study were used for external replication. GWAS summary statistics of “sleep disorders 
(combined)” were used for validation of seven self-reported sleep-related traits and “sleep apnoea” for sleep apnoea. Among 22 genes that 
have not been reported in previous studies, 20 of them are associated with sleep disorders in FinnGen (see Tables 1 and 2). Rs985277 and 
rs1879581 were two exceptions that did not show a significant association with sleep disorders in FinnGen, possibly due to differences 
between the phenotype “sleep disorders (combined)” and sleep-related traits or due to heterogeneity across different populations.

Randomization Covariates including age, sex, BMI, and the first 10 genetic principal components (calculated with whole-exome sequencing data) were 
adjusted in the study.
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Blinding Blinding was not applicable to this study as this study is observational.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type T1-weighted structural MRI data was obtained from UK Biobank (application 19542).

Design specifications UK Biobank designed the imaging acquisition protocols including 6 modalities, covering structural, diffusion and 
functional imaging. In the current study, T1-weighted structural image was used and the image was acquired using 
straight sagittal orientation for 5 minutes.

Behavioral performance measures N/A

Acquisition
Imaging type(s) T1-weighted structural imaging

Field strength 3T

Sequence & imaging parameters The EPI-based acquisitions utilize simultaneous multi-slice (multiband) acceleration. UK Biobank uses pulse sequences 
and reconstruction code from the Center for Magnetic Resonance Research (CMRR), University of Minnesota https://
www.cmrr.umn.edu/multiband. The resolution is 1x1x1 mm and field of view is 208x256x256 matrix. Straight sagittal 
orientation is used. TR and TE are 2000ms and 2.01ms respectively. The flip angle is 8 deg. Detailed sequence and 
imaging parameters are openly available here: https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used the pipeline with the Statistical Parametric Mapping software version 12 (http://www.fil.ion.ucl.ac.uk/spm) using 
the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat) with default settings, to preprocess the structural MRI data, which 
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contained the usage of high-dimensional spatial normalization with an already integrated Dartel template in Montreal 
Neurological Institute (MNI) space. All images were subjected to nonlinear modulations and corrected for each individual 
head size. Images were then smoothed with an 8 mm full-width at half-maximum Gaussian kernel with the resulting voxel 
size of 1.5 mm3. The automated anatomical labeling 3 (AAL3) atlas, which partitioned the brain into 166 regions of interest, 
was employed to obtain the region-wise gray matter volume.

Normalization See above

Normalization template See above

Noise and artifact removal See above

Volume censoring See above

Statistical modeling & inference

Model type and settings Mass univariate

Effect(s) tested Associations of sleep-related genes and gray matter measures were tested using SAIGE-GENE+.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) All imaging derived phenotypes were extracted based on the automated anatomical labeling 3 (AAL3) 
atlas.

Statistic type for inference

(See Eklund et al. 2016)

N/A (see methods on phenome-wide association analysis)

Correction We applied Bonferroni correction and false discovery rate (FDR) correction for testing of multiple genes and traits.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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