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Neurophysiological stratification of major 
depressive disorder by distinct trajectories

Di Chen    1,2,13, Xiang Wang3,4,5,13, Valerie Voon1,2,6,13, Yuchao Jiang    1,2, Chun-
Yi Zac Lo    1,2, Linbo Wang1,2, Chun Shen1,2, Shitong Xiang    1,2, Shuqiao Yao3, 
Jie Zhang1,2, ZIB Consortium*, DIRECT Consortium*, Tianye Jia    1,2,7 , 
Wei Cheng    1,2,8,9,10,11  & Jianfeng Feng    1,2,12 

Major depressive disorder (MDD) has been characterized by structural 
abnormalities of multiple brain regions. Nevertheless, little is known about 
the underlying neuropathological origin of MDD, particularly based on 
distinct trajectories of brain atrophy. Here, using the data-driven subtype and 
stage inference algorithm on large case–control magnetic resonance imaging 
data from 3,940 individuals (1,789 patients with MDD; 2,151 healthy controls), 
we demonstrated three highly robust spatiotemporal MDD subtypes: 
subtype 1 initiates from the subgenual anterior cingulate cortex, subtype 2 
starts at the hippocampus and subtype 3 begins in the superior frontal gyrus 
and then the orbitofrontal cortex. These subtypes also exhibited distinct 
clinical profiles and differing transcriptomic gene expressions. Specifically, 
we identified suicide risk as the characteristic symptom for the ‘anterior 
cingulate cortex-led’ subtype, as well as low motivation (for example, work 
interests) for the ‘frontal-led’ and somatic anxiety for the ‘hippocampus-
led’. Distinguishable cell type-specific transcriptional signatures further 
indicate distinct origins of MDD subtypes. Together, our data-driven findings 
demonstrate different spatiotemporal trajectories of MDD subtypes, which 
may contribute to the potential for individualized diagnostics, suicide risk 
alerts and optimizing therapeutic targeting.

Major depressive disorder (MDD) is a common major public health 
issue and a global leading cause of disability1. Behavioural symp-
toms such as feelings of sadness and helplessness, loss of pleasure 
and lack of motivation and cognitive deficits are key features of 
MDD2,3. The diagnosis of MDD is guided by subjective behavioural 

symptoms rather than objective indices with remarkable heteroge-
neity in phenotypic presentation, aetiology and longitudinal trajec-
tory4–6. Emerging consensus suggests MDD may consist of multiple 
subtypes4,7,8. However, few studies have managed to demonstrate 
whether highly reproducible neuropathological features, such as 
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The SuStaIn model is based on the Bayesian inversion of a generative 
model of disease progression23. This model assumes the existence of 
an unknown number of subtypes, each characterized by distinct pro-
gressive patterns of disease biomarkers, specifically changes in grey 
matter density over the brain. These ‘trajectories’ are represented as 
ordered sequences of progressive biomarker changes corresponding 
to different disease stages23. To generate a sample from this model, a 
specific subtype and stage are selected to produce a pattern of bio-
markers. Importantly, this approach allows for the reconstruction of 
‘trajectories’ for each subtype using cross-sectional data, by identify-
ing the best subgroup and disease stage for each subject. Through 
model inversion, it becomes possible to assign a probability to each 
subject indicating their likelihood of belonging to a particular sub-
group and stage of disease progression. By effectively disentangling 
the subtype and stage, this generative model inversion uncovers the 
underlying causes of measurable pathology. The inversion process of 
this generative model employs standard procedures such as expecta-
tion maximization and Markov chain Monte Carlo23. Using the SuStaIn 
model, based on cross-sectional samples, we focus on characterizing 
anatomical volumetric changes contributing to heterogeneity, par-
ticularly on predicted ‘trajectory’ (that is, the most probable sequence  
of spatial progression) that contributes to grey matter atrophy.

distinct progressive anatomical brain atrophy, could underlie different  
MDD subtypes.

Recent developments in magnetic resonance imaging (MRI) pro-
vide insights into the potential for neural biomarkers to character-
ize mental disorders to distinguish patients from healthy controls 
(HCs)3,9–12. From the large-scale Enhancing NeuroImaging Genetics 
through Meta-Analysis consortium, patients with MDD show reduced 
volume of the hippocampus11 and lower cortical thickness in the ante-
rior cingulate cortex (ACC), orbitofrontal cortex (OFC), insula, fusi-
form gyrus, superior frontal gyrus (SFG) and temporal lobe13–16. Mid 
cingulate structural findings are also functionally associated with the 
experience of negative affect and pain in MDD17. Previous functional 
MRI studies further identified OFC, hippocampus, ACC, insula, mid-
dle frontal gyrus and rectus regions as enriched hubs that distinguish 
MDD from HCs5,18–21.

Beyond the simple categorization of pathological versus healthy 
groups, studies have also explored the use of neuroanatomical  
(grey matter density) features to identify subtype of MDD7,22. Most 
notably, the subtype and stage inference (SuStaIn) algorithm in 
neuroscience has provided insights into how differing mechanisms 
underlying volumetric changes and anatomical atrophy might result 
in heterogeneous clinical presentations of mental disorders23–25.  
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Fig. 1 | Schematic overview of the present study. This schematic overview 
provides a visual representation of the framework for the present study. The 
discovery samples from the REST-meta-MDD (a), image processing procedures 
(b), characteristic matrix of the brain images (c), application of the data-driven 

neural atrophy algorithm (d), identification of topological subtypes of MDD 
(e), evaluation of the robustness of MDD subtypes (f), characterization of MDD 
subtypes by clinical profiles (g), differing transcriptomic gene expressions (h), 
disparate MDD-related gene expression (i).
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In this Article, we applied the SuStaIn algorithm to grey matter 
volume (GMV), as characterized by voxel-based morphometry, in a 
large neuroimaging cohort (that is, nMDD = 1,151, nHC = 1,064) of the 
REST-meta-MDD project10,26. Using Bayesian model selection, we identi-
fied the number of subtypes and validated the associated patterns of 
atrophy in two replication studies (nMDD = 253, nHC = 585 for the DecNef 
Project from Japan27; nMDD = 385, nHC = 502 from the Second Xiangya 
Hospital project). Having established the predictive validity of the 
model, we then present a series of construct validations by showing 
notable correlations with clinical phenotypes. To investigate different 
potential genetic factors of MDD subtypes, we also employed the Allen 
Human Brain Atlas (AHBA) microarray dataset (http://human.brain-
map.org), which has been used to identify transcriptomics associated 
with the pattern of specific disease progression28. Figure 1 provides an 
overview of this present study.

Results
Whole-brain analysis of brain GMV
We first identified the most distinguishable brain patterns between 
MDD and healthy controls through GMV using a whole-brain analysis 
approach. Using the Automated Anatomical Labeling Atlas (AAL)-2 
brain template, we identified whole-brain region of interest (ROI)-
based differences (Fig. 2a) after controlling for factors including total 
intracranial volume (TIV), age, sex, years of education and site in the 
REST-meta-MDD project (nMDD = 1,151, nHC = 1,064; Supplementary  
Table 1); for details, see Supplementary Table 2.

Using the replication dataset from the Japan DecNef Project 
(nMDD = 253, nHC = 585; Supplementary Table 1), we also confirmed this 
MDD brain pattern using the same whole-brain ROI-based analysis 
procedure (Supplementary Fig. 1 and Supplementary Table 3). We 
observed a significant correlation of ROI-based brain pattern differ-
ences (that is, case–control t values) between the REST-meta-MDD 
project and the Japan DecNef Project (Spearman r = 0.44, Ppermu = 0.002 
after 10,000 times of standard permutation flow; Supplementary 
Fig. 2), thus confirming the consistency of the identified MDD brain 
pattern. In the second replication cohort from the Second Xiangya 
Hospital, however, we did not observe a significant pattern similarity 
(P = 0.7856) with the discovery data. This is probably due to a much 
younger age in the second replication cohort (mean age 22.21 years, 
standard deviation (s.d.) 5.22 years; nMDD = 385, nHC = 502) in contrast 
with the discovery dataset (mean age 36.80 years, s.d. 15.08 years; 
nMDD = 1,151, nHC = 1,064). Indeed, after partitioning the second repli-
cation cohort individuals into adolescents (age <21 years) and adults 
(age ≥21 years) (that is, adolescents: age <21 years, nMDD = 173, nHC = 277, 
mean age 18.92 years, s.d. 1.13 years; adults: age ≥21 years, nMDD = 212, 
nHC = 225, mean age 25.60 years, s.d. 5.60 years), we found that the adult 
group (Spearman radults = 0.18) had a significantly higher similarity with 
the discovery datasets than the adolescent group (Spearman r = −0.16) 
(rdif = 0.34, Ppermu = 0.0454 based on 10,000 times permutation).

Identification of topological subtype of MDD
We then applied the SuStaIn algorithm to identify distinct sustained 
brain atrophy throughout all progressive stages, that is, the ‘trajecto-
ries’25, from 2,215 individuals (nMDD = 1,151, nHC = 1,064; Supplementary 

Table 1) of the REST-meta-MDD project. Due to the distribution of 
average negative log-likelihood from five-fold validation, a three-
cluster partition was the optimal choice (for details, see Methods), 
which showed the minimum cross-validation information criterion 
(CVIC) (Supplementary Fig. 3a) and maximal log-likelihood (Sup-
plementary Fig. 3b). The following three MDD subtypes with dis-
tinct ‘trajectories’ were identified from the SuStaIn model: subtype 1 
showed initial atrophy starting in the subgenual ACC, then progress-
ing to the supracallosal ACC, to the pregenual ACC and finally to the 
middle cingulate gyri (Fig. 2b). Subtype 2 exhibited atrophy starting 
in the hippocampus, then progressing to temporal regions and the 
fusiform gyrus (Fig. 2b). Subtype 3 displayed atrophy beginning in 
the SFG, then progressing to the middle frontal gyrus and ultimately 
to the OFC (Fig. 2b).

The SuStaIn algorithm assigned each patient with MDD of the 
REST-meta-MDD project (nMDD = 1,151; Fig. 2c) to the most probable 
subtype label and atrophy stage. Note that patients with MDD in 
‘stage 0’ in the atrophy stage were identified as ‘pre-atrophy’, while 
other patients were defined as ‘post-atrophy’ in the present study. 
A total of 433 patients with MDD (37.62% of the total) were classified 
as subtype 1, which was further divided into ‘pre-atrophy’ (npre = 187 
for subtype 1) or ‘post-atrophy’ (that is, ‘ACC-led’; nACC = 246) phase. 
The subtype 2 patients with MDD (nsubtype2 = 486, 42.22% of the total) 
were also assigned to ‘pre-atrophy’ (npre = 249 for subtype 2) or ‘post-
atrophy’ (that is, ‘hippocampus-led’, nhippocampus = 237) phase, as well 
as the subtype 3 (nsubtype3 = 232, 20.16% of the total; npre = 72 for sub-
type3, nfrontal = 160). The probability-based distribution of three 
post-atrophy ‘trajectories’ (that is, ‘ACC-led’, ‘hippocampus-led’ 
and ‘frontal-led’) from the REST-meta-MDD project can be found 
in Fig. 2d. We then investigated the influence of confounders (that 
is, medication history, age, sex and education) on MDD subtypes 
and found no potential impact (Supplementary Table 4 and Sup-
plementary Fig. 4).

To further characterize the stage-based progression of atrophy 
for patients with MDD from the REST-meta-MDD project, we calculated 
the mean z-value images (that is, reduction of GMV) and investigated 
their relationship with SuStaIn stage. The decrease of ROI-based GMV 
(that is, increasing z-value) for each subtype (that is, ‘post-atrophy’) 
is shown in Fig. 2e. In addition, reduced total GMV (r = −0.29, PBonfer-

roni < 0.001, Bonferroni corrected; Fig. 2f), increased cerebrospinal fluid 
(CSF) (r = 0.56, PBonferroni < 0.001, Bonferroni corrected; Fig. 2g), and a 
trend towards larger white matter volume (WMV) were also observed 
with increased SuStaIn stages (r = 0.07, PBonferroni = 0.066, Bonferroni 
corrected; Fig. 2h).

We then investigated the relationship between ROI-based GMV 
(z-value) and SuStaIn stage. As expected, we observed the z-valued 
GMV of ACC significantly correlated with the SuStaIn stage in the 
‘ACC-led’ subtype (r = 0.11, PFDR = 0.048 for subgenual ACC; r = 0.52, 
PFDR < 0.001 for pregenual ACC; r = 0.36, PFDR < 0.001 for supracal-
losal ACC; false discovery rate (FDR) corrected). The GMV of the 
hippocampus (z-value) was also associated with the SuStaIn stage 
in the ‘hippocampus-led’ subtype (r = 0.26, PFDR < 0.001; FDR cor-
rected). A significant correlation of the ‘frontal-led’ subtype was 
similarly found in OFC (r = 0.58, PFDR < 0.001 for medial OFC; r = 0.44, 

Fig. 2 | Identified topological subtype of MDD from the REST-meta-MDD 
project. a, ROI-based group differences of the REST-meta-MDD project in 
GMV between patients with MDD and HCs. L, left. R, right. b, Three atrophy 
‘trajectories’ in the REST-meta-MDD project. The positional variance diagrams 
employ various colours to depict the probability of each brain region attaining 
a specific z-score, providing a visual representation of the variability in position 
across different regions. Different colours shown on the visualization correspond 
with varying degrees of GMV loss severity. Mildly affected regions are depicted as 
red (z = 1), moderately affected regions appear as magenta (z = 1.5) and severely 
affected regions are represented by blue (z = 2). The colour density illustrates the 

proportion of the posterior distribution that events arise in a particular position 
in the sequence23,25. c, Flowchart of exclusion criteria of the REST-meta-MDD 
project. d, The probability-based distribution of three post-atrophy (that is, ACC-
led, hippocampus-led and frontal-led). e, Decrease of ROI-based GMV (that is, 
increasing z-value) for each ‘post-atrophy’. Stage I: stage = 1, stage II: 2 ≤ stage ≤ 3, 
stage III: 4 ≤ stage ≤ 7, stage IV: 8 ≤ stage ≤ 15, stage V: 16 ≤ stage. f–h, Associations 
between total brain (that is, GMV (f), CSF (g) and WMV (h)) and SuStaIn stage. 
Pearson correlation test (two-tailed P value, Bonferroni corrected) was used. The 
error band represents the 95% confidence interval around the line.
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PFDR < 0.001 for anterior OFC; r = 0.38, PFDR < 0.001 for posterior OFC; 
r = 0.57, PFDR < 0.001 for lateral OFC; FDR corrected), but not in the SFG 
(r = 0.08, PFDR = 0.158; FDR corrected).

We further investigated the stability of the SuStaIn ‘trajectories’ 
with additional z-score thresholds (that is, z = [1, 2, 3] from previous 

SuStaIn publications23,25 and a further increased z = [2, 3, 4]) and 
found consistent results (Supplementary Fig. 5). Further, the SuStaIn 
model with a small number (n = 14) of ROIs (that is, merged tempo-
ral and OFC areas, respectively) also showed similar ‘trajectories’  
(Supplementary Fig. 6).
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Robustness of MDD subtypes
We then applied the SuStaIn procedure with identical parameters 
in two independent replication datasets from the Japan DecNef 
Project (nMDD = 253, nHC = 585; Fig. 3a,b and Supplementary Table 1)  
and the Second Xiangya Hospital (nMDD = 385, nHC = 502; Fig. 3c,d 
and Supplementary Table 1) and evaluated the similarity of atrophy 
‘trajectories’ between the discovery and each replication dataset 
using the Spearman’s rank correlation between the correspond-
ing sequences of progressive biomarkers (that is, 19 × 3 = 57). The 
observed SuStaIn exportation (that is, order of atrophy ‘trajectory’) 
in both replication datasets showed significant consistency with the 
discovery dataset of the REST-meta-MDD project ( Japan DecNef Pro-
ject: r = 0.47, Pone-tailed < 0.001 for subtype 1; r = 0.47, Pone-tailed < 0.001 
for subtype 2; r = 0.57, Pone-tailed < 0.001 for subtype 3; FDR corrected;  
Fig. 3e; Second Xiangya Hospital: r = 0.66, Pone-tailed < 0.001 
for subtype 1; r = 0.36, Pone-tailed = 0.003 for subtype 2; r = 0.35,  
Pone-tailed = 0.004 for subtype 3; FDR corrected; Fig. 3f ). The corre-
sponding probability-based distributions of three post-atrophy 

‘trajectories’ (that is, ‘ACC-led’, ‘hippocampus-led’ and ‘frontal-led’) 
of the Japan DecNef Project and Second Xiangya Hospital data are 
shown in Fig. 3g and Fig. 3h, respectively.

The consistent performance across three independent large sam-
ple MDD clinical neuroimaging datasets (that is, the REST-meta-MDD 
project, the Japan DecNef Project and the Second Xiangya Hospital 
project) confirmed the robustness of MDD subtypes.

Characterization of MDD subtypes by clinical profiles
We then asked how behavioural symptoms might link to the iden-
tified MDD anatomical subtypes. Multivariate analysis of variance 
(MANOVA)29,30 conducted to evaluate group differences among three 
MDD subtypes (that is, ‘ACC-led’, ‘hippocampus-led’ and ‘frontal-led’) 
across all 17 Hamilton depression rating scale (HAMD) items found 
significant results (η = 0.22, adjusted η = 0.11, Ppermu = 0.0008 based on 
10,000 permutation iterations; Fig. 4a). With the significant MANOVA 
finding, we then conducted a one-way analysis of variance (ANOVA) to 
explore each HAMD item’s group differences among MDD subtypes. 
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Fig. 3 | Robustness of MDD subtypes across two independent datasets.  
a, Three atrophy ‘trajectories’ in the Japan DecNef Project. b, Flowchart of 
exclusion criteria of the Japan DecNef Project. c, Three atrophy ‘trajectories’ in 
the Second Xiangya Hospital. d, Flowchart of exclusion criteria of the Second 
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test (one-tailed P value, FDR corrected) was used. f, Order similarity of atrophy 
‘trajectory’ between the discovery dataset and the Second Xiangya Hospital. 
Spearman’s rank correlation test (one-tailed P value, FDR corrected) was used.  
g, The probability-based distribution of three MDD subtypes form the Japan 
DecNef Project. h, The probability-based distribution of three MDD subtypes 
form the Second Xiangya Hospital.
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Notably, because these one-way ANOVA were essentially subsections 
of an already significant MANOVA, no further correction for multiple 
comparisons was needed31 (that is, the significant MANOVA effectively 
protected against inflated experiment-wise error rates of the following 
ANOVA). For clarity of presentation, the following terms were restricted 
to include only the HAMD items with a significant one-way ANOVA (that 
is, P < 0.05). Confounding factors including age, sex, years of educa-
tion and site were first regressed out from the behavioural analyses.

The ‘ACC-led’ subtype displayed a high ‘suicide’ risk score 
(ANOVA: F = 3.24, P = 0.041; t = 2.62, Cohen’s d = 0.37, Ptwo-tailed = 0.0095,  
nACC-led = 93, nhippocampus-led = 106 for ‘ACC-led’ versus ‘hippocampus-led’; 
Fig. 4b and Supplementary Table 5). In contrast, the ‘hippocampus-led’  
subtype exhibited high ‘somatic anxiety’ behavioural scores  
(ANOVA: F = 3.41, P = 0.035; t = −2.57, Cohen’s d = −0.37, Ptwo-tailed = 0.0109, 
nACC-led = 93, nhippocampus-led = 106 for ‘ACC-led’ versus ‘hippocampus-
led’; Fig. 4c and Supplementary Table 5), whereas the ‘frontal-led’ 
showed impaired ‘work and interests’ score (ANOVA: F = 5.17, P = 0.006;  
t = −3.10, Cohen’s d = −0.48, Ptwo-tailed = 0.0022, nACC-led = 93, nfrontal-led = 77,  
for ‘ACC-led’ versus ‘frontal-led’; t = −2.71, Cohen’s d = −0.41,  
Ptwo-tailed = 0.0074, nhippocampus-led = 106, nfrontal-led = 77 for ‘hippocampus- 
led’ versus ‘frontal-led’; Fig. 4d and Supplementary Table 5). In addi-
tion, the distinct relationships between brain atrophy of MDD subtypes  
and characteristic profiles were also observed (that is, higher z-scored 
GMV was positively associated with increasing symptoms; Fig. 4e), 
which again support behavioural differences among MDD subtypes.

Characterization of MDD subtypes by gene expression 
patterns
We first conducted a whole-brain voxel-based analysis of GMV contrast-
ing three distinct ‘post-atrophy’ MDD subtypes to healthy controls. We 
then conducted the partial least square (PLS) analysis32 to ascertain the 
relationship between the voxel-based case–control differences (that is, 
the whole-brain t-map) of each subtype and the transcriptional activi-
ties of all 10,027 genes from AHBA. The derived first component of gene 
expression (PLS1) was the linear combination of gene expression that 
captured the greatest fraction of case–control GMV difference. As a 
result, the MDD brain pattern (that is, voxel-based case–control t-map) 
of the ‘ACC-led’ subtype demonstrated a significant correlation with its 
PLS1 (r = 0.36, Ppermu < 0.001, Bonferroni corrected; Fig. 5a) after 1,000 
iterations of standard permutation flow, as well as the ‘hippocampus-
led’ subtype (r = 0.42, Ppermu < 0.001, Bonferroni corrected; Fig. 5b), 
but not for the ‘frontal-led’ subtype (r = 0.21, Ppermu = 0.351, Bonferroni 
corrected; Fig. 5c).

The gene-wise approach was then adopted to explore associations 
between the whole-brain t-maps of MDD subtypes and the transcrip-
tional activity for each of the 10,027 genes. We first ranked the weights 
of PLS1 by one-sample z-tests. Using a stringent threshold (z > 5 for 
PLS1+ or z < −5 for PLS1−), we then identified 3,600 genes (n = 1,883 
for PLS1+, n = 1,717 for PLS1−; all PFDR < 0.001) for the ‘ACC-led’, 3,167 
genes (n = 1,874 for PLS1+, n = 1,293 for PLS1−; all PFDR < 0.001) for the 
‘hippocampus-led’, and 1,480 genes (n = 486 for PLS1+, n = 994 for 
PLS1−; all PFDR < 0.001) for the ‘frontal-led’. Finally, to characterize 
the biological functions of these identified genes, we conducted 
the enrichment analyses based on Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) using the R package 
‘clusterProfiler’33.

After FDR correction (PFDR < 0.05), we identified two significant GO 
terms (Supplementary Table 6 and Supplementary Fig. 7) related to ves-
sel formation enriched with ‘ACC-led’ PLS1+ genes (that is, ‘endothelium 
development’ and ‘endothelial cell differentiation’). Interestingly, the 
endothelial progenitor cells that underlie blood vessel regeneration 
have long been associated with depressive symptoms, although the 
underlying mechanism remains unclear34–36. In addition, 66 GO terms 
(for example, ‘vesicle-mediated transport in synapse’; Supplementary 
Table 7 and Supplementary Fig. 7) and 13 KEGG pathways, such as 

‘neuroactive ligand–receptor interaction’, were enriched with ‘ACC-
led’ PLS1− genes (Supplementary Table 8 and Supplementary Fig. 7).

Further, we identified 31 GO terms (for example, ‘RNA process-
ing’; Supplementary Table 9 and Supplementary Fig. 8) and 2 KEGG 
pathways (for example, ‘ribosome’; Supplementary Table 10 and Sup-
plementary Fig. 8) for the ‘hippocampus-led’ PLS1+ genes, as well as 
123 GO terms (for example, ‘axon development’ and ‘neuron projection 
morphogenesis’; Supplementary Table 11 and Supplementary Fig. 8) 
and 4 KEGG pathways (for example, ‘axon guidance’ and ‘neuroactive 
ligand–receptor interaction’) for ‘hippocampus-led’ PLS1− genes (Sup-
plementary Table 12 and Supplementary Fig. 8).

Finally, we identified 11 GO terms (for example, ‘regulation of tissue 
remodelling’; Supplementary Table 13 and Supplementary Fig. 9) and 
3 KEGG pathways (that is, ‘notch signalling pathway’; Supplementary 
Table 14 and Supplementary Fig. 9) enriched with ‘frontal-led’ PLS1+ 
genes, and 26 GO terms (for example, ‘distal axon’; Supplementary 
Table 15 and Supplementary Fig. 9) and 2 KEGG pathways (for exam-
ple, ‘neuroactive ligand–receptor interaction’; Supplementary Table 
16 and Supplementary Fig. 9) enriched with ‘frontal-led’ PLS1− genes.

Differentiated MDD gene expression patterns of MDD 
subtypes
The first and second principal component analysis (that is, PCA1 and 
PCA2) scores of 12 MDD-related genes (‘ADRA2A’, ‘CHRM2’, ‘CNR1’, ‘CRH’, 
‘CUX2’, ‘GAD2’, ‘HTR1A’, ‘HTR5A’, ‘MAOA’, ‘PDE1A’, ‘SST’ and ‘TAC1’; Sup-
plementary Table 17; for more details, see Methods) were estimated to 
preserve the maximum amount of genetic information. We observed 
significant correlations between the PCA1 with the ‘ACC-led’ (r = 0.16, 
Ppermu = 0.032, FDR corrected; Fig. 5d) and ‘hippocampus-led’ brain 
pattern (r = 0.21, Ppermu = 0.004, FDR corrected; Fig. 5e), but not with 
the ‘frontal-led’ pattern (r = −0.02, Ppermu = 0.836, FDR corrected;  
Fig. 5f). Unlike PCA1, PCA2 demonstrated significant associations 
with both brain patterns of the ‘ACC-led’ (r = −0.29, Ppermu < 0.001, 
FDR corrected; Fig. 5d) and the ‘frontal-led’ (r = −0.19, Ppermu = 0.006, 
FDR corrected; Fig. 5f), but not with the ‘hippocampus-led’ (r = −0.07, 
Ppermu = 0.406, FDR corrected; Fig. 5e).

We further evaluated the relationships between MDD-related 
genes and distinct brain patterns of MDD subtypes. After 1,000 itera-
tions of standard permutation flow and with FDR correction, we identi-
fied five MDD-related genes (that is, ‘CNR1’, ‘GAD2’, ‘HTR1A’, ‘MAOA’ and 
‘SST’; Fig. 5g and Supplementary Table 18) that were significantly rel-
evant (Ppermu < 0.001, FDR corrected) to the brain pattern for ‘hippocam-
pus-led’ subtype, one gene for ‘frontal-led’ subtype (that is, ‘SST’; Fig. 5g 
and Supplementary Table 18) and five genes for ‘ACC-led’ subtype (that 
is, ‘CNR1’, ‘HTR1A’, ‘PDE1A’, ‘SST’ and ‘TAC1’; Fig. 5g and Supplementary 
Table 18). Notably, the ‘hippocampus-led’ patients with MDD showed 
specificity for ‘GAD2’ and ‘MAOA’ genes (r = 0.20, Ppermu < 0.001 for 
‘GAD2’; r = −0.23, Ppermu < 0.001 for ‘MAOA’; FDR corrected) whereas 
‘ACC-led’ individuals showed specificity for ‘PDE1A’ and ‘TAC1’ genes 
(r = −0.26, Ppermu < 0.001 for ‘PDE1A’; r = −0.13, Ppermu = 0.029 for ‘TAC1’; 
FDR corrected) (for details, see Fig. 5g and Supplementary Table 18).

Discussion
The progression of neural atrophy in MDD has been previously 
reported, but little is known about the underlying neurobiological 
mechanisms, particularly their distinct progressive patterns or ‘tra-
jectories’. Here, using the data-driven SuStaIn algorithm on a large 
clinical sample with neuroimaging, we highlighted three different 
‘trajectories’ of spatiotemporal atrophy: the first ‘trajectory’ began with 
subgenual anterior cingulate cortex (sgACC) atrophy that progressively 
encompassed the whole ACC; the second ‘trajectory’ showed initial hip-
pocampal atrophy and progressively affected temporal substrates; and 
the third ‘trajectory’ initiated with SFG atrophy and progressed into the 
middle frontal and orbitofrontal cortices. These different anatomical 
‘trajectories’ were also linked to distinct behavioural symptoms: suicide 
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risk was highest in patients from the ‘ACC-led’ subtype; somatic anxi-
ety was primarily observed in the ‘hippocampus-led’ subtype; and loss 
of interest in daily life was most severe in the ‘frontal-led’ subtype. As 
further evidence to support the biological plausibility of the three dis-
tinct subtypes, we demonstrated specific gene expression patterns for 
each ‘trajectory’. Remarkably, the MDD-related genes were dissociable 
between the three different ‘trajectories’. Further, the robustness of 
the three atrophy subtypes was supported, not only by the moderate 
to large sample size in the discovery dataset, but also by validation in 
two independent datasets, hence illustrating the high reproducibility 
of the ‘trajectories’. Thus, we highlight the clinical implications of these 
three subtypes identified by spatiotemporal atrophy differentiation, 
behavioural markers and genetic differences in patients with MDD, 
which may be relevant for potential individualized diagnoses and pre-
dictions of clinical trajectories.

The ‘ACC-led’ subtype suggests the sgACC as a pathophysiologi-
cal origin of MDD (Fig. 2b), which is in line with previous studies13,37–39. 
The sgACC shows extensive interactions with key features of MDD 
implicated across mood, somatic and cognitive symptoms and 
plays a critical role in regulating mood states, sustaining autonomic 
arousal and worsening negative MDD symptoms (for example, rumi-
nation)21,40. This ACC-origin theory is further supported by findings 
that young individuals with MDD show significantly reduced ACC 
γ-aminobutyric acid41. Finally, sgACC activity could be improved in 
MDD following multiple forms of successful therapeutic interven-
tions, including psychotherapy, antidepressants and ketamine infu-
sion42, and the sgACC is also the target for deep brain stimulation for 
MDD43 and its hypoconnectivity with dorsolateral prefrontal cortex 
is an effective biomarker to optimize repetitive transcranial mag-
netic stimulation targeting44. Together these findings highlighted 
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Fig. 5 | Distinct ‘gene expression–brain’ profiles of MDD subtypes. a–c, The 
first component of PLS (that is, PLS1) was employed to evaluate the relationship 
between the voxel-based case–control differences (that is, the whole-brain t-
map) of each subtype (AAC-led (a), hippocampus-led (b) and frontal-led (c)) and 
the transcriptional activities of all 10,027 genes from AHBA; Pearson correlation 
test (one-tailed P value, Bonferroni corrected) was used. d–f, Associations 

between the first two principal components of 12 MDD-related genes and the 
whole-brain t-map of each MDD subtype (AAC-led (d), hippocampus-led (e) and 
frontal-led (f)); two-tailed P value, FDR corrected. g, MDD-related genes were 
differentially expressed in different MDD subtypes. The r values and P values can 
be found in Supplementary Table 18; all P values were evaluated with 1,000 times 
permutation; FDR-corrected two-tailed *P < 0.05.
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a potentially stratified treatment strategy targeting the ‘ACC-led’ 
subtype in therapeutic interventions.

The hippocampus is implicated as a brain region for emotional 
responses, learning and memory45 and converting short-term memory 
into long-term memory. Using the SuStaIn algorithm, we identified this 
brain area as the pathophysiological origin of the ‘hippocampus-led’ 
subtype, which is consistent with reductions of hippocampal volume 
observed in patients with early-onset MDD from previous studies11,46. In 
longitudinal studies, the hippocampal volume has also been reported 
to progressively decrease during the MDD disease course beyond that 
of normal ageing47, thus supporting hippocampal changes observed 
with SuStaIn stages.

The OFC plays a core role in emotion, pleasure and decision-mak-
ing, representing the primary reinforcers’ reward value48. Patients 
with MDD show lower volumes of the SFG and OFC, in line with other 
structural MRI studies2,13. As a genetic verification from the UK Biobank 
study, the polygenic risk score of anhedonia has also shown an asso-
ciation with OFC volumes2,49. For the ‘frontal-led’ subtype of patients 
with MDD, we demonstrated the SFG and OFC as the neural origin. OFC 
abnormalities in patients with MDD have been reported to emerge early 
and have a negative effect on emotion regulation2,50, supporting the 
frontal-led theory. Resting-state functional connectivity in patients 
with MDD shows abnormalities within networks anchored on differ-
ent OFC regions5. Furthermore, targeting the dorsomedial prefrontal 
cortex51 (adjacent to the SFG) and OFC52 with repetitive transcranial 
magnetic stimulation has shown evidence for efficacy in MDD therapy. 
In summary, the identified MDD subtypes might be responsive to 
alternative targeting strategies.

The above argument was further supported by the findings that 
different MDD subtypes demonstrate distinct behavioural symptoms. 
Suicide risk was found highest for the ‘ACC-led’ subtype, moderate 
for the ‘hippocampus-led’ and lowest for the ‘frontal-led’ subtype  
(Fig. 4b), which converges well with previous studies2,53. Also, a decrease 
in dorsal ACC-pregenual ACC resting-state functional connectivity has 
been shown to correlate with a reduction in suicidal risk53. Further, 
the ‘frontal-led’ subtype displayed significantly higher impairment in 
‘work and interests’ score than the other subtypes, indicating lower 
motivation for this subtype, which is in line with OFC’s implicated role 
in reward-guided learning and decision-making54. Finally, we showed a 
dedicated relationship between somatic anxiety and the ‘hippocampal-
led’ subtype. As MDD has also been reported as a risk factor for the 
development of Alzheimer’s disease55, further longitudinal studies 
investigating the clinical implications for this subtype in tracking 
memory deficits or as a prodromal state are needed. Furthermore, 
MDD-related genes also displayed differing transcriptional correlates 
of the three subtypes (Fig. 5g), indicating distinct origins and confirm-
ing biological plausibility for differentiating these ‘trajectories’. These 
findings demonstrated that characteristic symptoms linked to these 
‘trajectories’ may contribute to individualized diagnoses, highlighting 
the risk for suicide and optimal therapeutic targeting.

Finally, the identified MDD subtypes are highly robust, as they have 
been successfully replicated in two independent cohorts (Fig. 3a,c), 
and they also demonstrate highly similar trajectories in the presence or 
absence of medical treatment (Supplementary Fig. 4). However, while 
we acknowledge that different classes of medication may have different 
impacts on the progression of MDD subtypes, our current datasets do 
not have relevant information. Therefore, future research focusing on 
different medications would be useful to further our understanding of 
brain atrophy in MDD.

In conclusion, we identified three highly robust ‘trajectories’ of 
brain atrophy in patients with MDD starting in the sgACC, hippocampus 
and SFG/OFC, respectively, and each ‘trajectory’ demonstrates distinct 
clinical profiles and transcriptomic correlates. Our data-driven findings 
demonstrate the existence of subtypes in MDD and may contribute to 
the future stratified medicine and intervention.

Methods
Participants
A total of 1,151 patients with MDD and 1,064 HC individuals from the 
REST-meta-MDD project10,26 (age 37.21 ± 14.64 years, 68% female for 
MDD; age 36.35 ± 15.53 years, 60% female for HC) were included as 
the discovery dataset. For two replication datasets, the strategic 
research programme for brain sciences of the DecNef Project from 
Japan (nMDD = 253, nHC = 585, age 42.49 ± 11.99, 47% female for MDD; 
age 39.69 ± 15.48 years, 55% female for HC27) and the Second Xiangya 
Hospital study (nMDD = 385, nHC = 502, age 23.20 ± 6.42 years, 68% female 
for MDD; age 21.45 ± 3.91 years, 64% female for HC) were also investi-
gated. Based on the geographical location of the local hospitals, the 
participants’ ethnicity was identified (Chinese for the REST-meta-MDD 
project, Japanese for the Japan DecNef Project and Chinese for the 
Second Xiangya Hospital study). MDD patient diagnosis was confirmed 
by the structured clinical interview with the International Statistical 
Classification of Diseases and Related Health Problems 10th Revision 
or the Diagnostic and Statistical Manual of Mental Disorders, 4th Edi-
tion. The self-reported ‘sex’ was used due to its biological attribution. 
All participants agreed to provide clinical diagnosis, age, sex and years 
of education. The demographic characteristics are summarized in 
Supplementary Table 1.

Ethical permission was approved by the medical research ethics 
committee (no. H19045 for the REST-meta-MDD project; Advanced 
Telecommunications Research Institute International (nos. 13–133, 
14–133, 15–133, 16–133, 17–133 and 18–133), Hiroshima University (nos. 
E-172, E-38), Kyoto Prefectural University of Medicine (no. RBMR-
C-1098), Showa University (nos. B-2014-019 and UMIN000016134), 
the University of Tokyo Faculty of Medicine (no. 3150), Kyoto University 
(nos. C809 and R0027), Osaka University (no. 13384), and CiNet (no. 
20140611) for the Japan DecNef Project; and no. 2019-075 for the Second 
Xiangya Hospital study) and signed informed consent was obtained 
from all participants. The trial registration number for this study is 
ChiCTR2000031931 (ref. 56).

Image pre-processing and quality control
Structural T1-weighted MRI brain scans were collected for each dataset. 
Using the voxel based morphometry (VBM) 8 toolbox57, the office of 
the REST-meta-MDD project conducted standard pre-processing as 
reported in previous studies10,58. Aligned with the REST-meta-MDD 
project, similar image pre-processing was conducted for the Japan 
DecNef Project and the Second Xiangya Hospital study, and briefly 
described as follows: we first segmented the structural T1-weighted 
MRI into grey matter, white matter and CSF using a unified segmenta-
tion routine59. We then employed the diffeomorphic anatomical reg-
istration through exponential lie algebra tool60 to transform individual 
native space into standard Montreal Neurological Institute space with 
1.5 × 1.5 × 1.5 mm3 resolution with an iterative registration. We modu-
lated the grey matter maps to correct for volumetric distortions (based 
on the Jacobian of the spatially normalizing deformations), resulting 
in grey matter images.

We used the 2nd edition AAL-2 (ref. 61) template to parcellate the 
brain into 120 ROIs and the 3rd edition AAL-3 (ref. 62) to split the ACC 
into three ROIs (that is, subgenual ACC, pregenual ACC and supracal-
losal ACC). We further extracted each ROI by averaging the signals of 
all voxels included.

Using the R package flashClust, imaging outliers were identified if 
showing negative correlations with most of the rest of the individuals 
in terms of the whole-brain similarity and hence removed; for details, 
see Supplementary Figs. 10–12.

Feature selection
Due to the heavy computing resource demanding of the SuStaIn 
model23, we restricted the number of input ROIs below 20 (n <20), 
which contains brain cortical regions with the largest atrophy (that is, 
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MDD versus HC: PFDR < 0.001 for each selected region, FDR corrected) in 
the REST-meta-MDD data, plus additional candidate ROIs (hippocam-
pus and OFCs) following findings from the Enhancing NeuroImaging 
Genetics through Meta-Analysis consortium11,13. As a result, 19 ROIs  
(Fig. 2b) were finally entered into the SuStaIn model to yield 57 
sequenced events (that is, 19 ROIs multiplied by three severity thresh-
olds, z = [1, 1.5, 2], gives a total of 57 stages). In the present study, we cal-
culated the mean value of two ROIs from the left and right hemispheres.

The SuStaIn model
Previous investigations have explored the use of imaging biomark-
ers to identify subtype of MDD7,22, yet the relatively low replicability 
prevents us from using these characteristics. As a novel algorithm, 
the SuStaIn model allows us to evaluate the neural atrophy subtype of 
MDD, which has exhibited excellent performance in identifying the 
distinct ‘trajectories’ of Alzheimer’s disease24.

Confounding factors such as the TIV, age, sex, years of education 
and site were first regressed out from ROIs for the REST-meta-MDD 
project. The adjusted ROI that fed into the SuStaIn model was  
z-scored relative to the population of the HCs and was calculated as: 
Yzscore = (−1) × Yi−mean(X)

std(X) , where X denotes GMVs of HC individuals and 
Yi is the GMV of the ith patient with MDD. As a result, the higher z-value 
represents severe brain atrophy condition relative to HCs. Three 
z-scores (1, 1.5 and 2) were employed as cut-offs of MDD severity to 
describe the disease progression for the model.

For two replication datasets (that is, Japan DecNef Project and 
Second Xiangya Hospital study), the TIV, age, sex and site were also 
regressed out from ROIs first. The adjusted ROIs were then fed into 
SuStaIn model with identical parameters and aligned with the discov-
ery dataset. Post hoc power analyses were conducted for the primary 
results of this study using G*Power63; for details, see Supplementary 
Table 19.

The optimal number of MDD subtypes
To identify the number of subtypes, as there is no consistent conclu-
sion from previous studies7,64, we used the CVIC and out-of-sample 
log-likelihood23 to evaluate the performance. We employed a five-fold 
cross-validation of the SuStaIn data to determine the optimal number 
of subtypes, which was calculated with different cluster numbers from 
1 to 5. Lower CVIC and higher log-likelihood represent better perfor-
mance in the SuStaIn algorithm23. The three-cluster partition was the 
optimal choice, which showed the minimum CVIC (Supplementary  
Fig. 3a) and maximal log-likelihood (Supplementary Fig. 3b). Hence the 
optimal three-cluster separation indicated that there are three distinct 
GMV-based atrophy progressions in patients with MDD.

Three distinct gene expressions of atrophy patterns
The AHBA dataset (http://human.brain-map.org)65 was employed 
to investigate the gene expression of MDD subtypes, which is a well-
known brain transcriptomic dataset66,67. Only the left hemisphere 
from six samples was used in the present study. Following a previous 
paper by Arnatkeviciute et al.28, we implemented standard pre-pro-
cessing of the AHBA dataset, including (1) the Re-annotator toolkit to 
identify the probe-to-gene annotations. (2) Intensity-based filtering 
and probe selection were performed. For each sample in the AHBA 
dataset, every probe has been assigned a binary indicator (that is, 
intensity-based filtering) to determine if it measures an expression 
signal surpassing the background levels28. To discriminate expression 
signal from noise, we used the intensity-based filtering28, which is 
based on a t-test criterion as outlined in the AHBA documentation68. 
After intensity-based filtering (that is, excluding probes that do not 
exceed the background noise threshold) and probe selection (that is, 
selecting microarray probes that have the highest correlation with the 
corresponding RNA-seq data), 10,027 genes were finally used in the 
present study28,66. (3) Samples were assigned within 2-mm Euclidean 

distance of a parcel. For the sample brain region distance, we com-
puted the distance by taking the minimum distance between the 
sample and any voxel in the region69–71, not by its centroid coordinate. 
This approach has been shown to be highly accurate for regions in any 
given parcellations irrespective of the size and folded geometry28. 
(4) We also conducted the scaled robust sigmoid normalization72 to 
control for heterogeneity due to donor difference. This approach 
normalizes gene expression based on the outlier–robust sigmoid 
function, which ensures equivalent scaling of expression values for 
each person in AHBA28.

The whole-brain analysis of GMV contrasting MDD and HC was 
then conducted to identify three MDD patterns (that is, whole-brain 
t-map). Finally, the statistical t-map was aligned to the transcriptomic 
data by the voxel-based coordinate of the MNI152 standard space. After 
standard pre-processing and intersection with the voxel-based brain 
template, we acquired a transcriptional matrix (1,397 locus × 10,027 
gene expression).

The selection of MDD-related genes
We investigated if previously reported MDD genes could also distin-
guish different atrophy-based subtypes. We chose previously defined 
MDD-related genes66 from the ‘Genes characterized by ISH in 1000 gene 
survey in cortex’ dataset provided by the AHBA68. The 12 MDD-related 
genes (that is, ‘ADRA2A’, ‘CHRM2’, ‘CNR1’, ‘CRH’, ‘CUX2’, ‘GAD2’, ‘HTR1A’, 
‘HTR5A’, ‘MAOA’, ‘PDE1A’, ‘SST’ and ‘TAC1’; for details, see Supplementary 
Table 17) were included after the search with ‘depression’ in the ‘Gene 
List’ and intersection with 10,027 total genes from the AHBA.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data of the AHBA microarray dataset are available from the website 
http://human.brain-map.org. The data of REST-meta-MDD project 
from the DIRECT Consortium are available from the website http://
www.rfmri.org/REST-meta-MDD. The data from the Japan DecNef 
Project are available from the website https://bicr.atr.jp/decnefpro/. 
The data from Second Xiangya Hospital within the ZIB Consortium are 
not available for public download, but access can be requested through 
the corresponding author J.F. ( jffeng@fudan.edu.cn). Requests for raw 
and analysed data will be promptly reviewed by the Fudan University 
ethics committee to verify whether the request is subject to any intel-
lectual property or confidentiality obligations.

Code availability
Python (version: 3.9.6) was employed to perform the SuStaIn algorithm 
(https://github.com/ucl-pond). BrainNet Viewer (version: 20191031) 
was used to visualize ROI-wise images. MATLAB (version: 2018b) was 
employed to perform the other analyses, including correlation analysis 
and t-test. R package flashClust (version 1.01–2) was used to imaging 
quality control. R package clusterProfiler (version 4.8.2) was employed 
for enrichment analysis. VBM (version VBM 8) was used to process the 
imaging data. G*Power (version 3.1) was employed for the power analy-
ses. The primary codes developed in the current study are available at 
GitHub (https://github.com/dichen27/).
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was involved in data collection

Data analysis Python (version: 3.9.6) was employed to perform the SuStaIn algorithm (https://github.com/ucl-pond). BrainNet Viewer (version: 20191031) 
was used to visualize ROI-wise images. Matlab (version: 2018b) was employed to perform the other analyses, including correlation analysis, t-
test. R package flashClust (version: 1.01-2) was used to imaging quality control. R package clusterProfiler (version: 4.8.2) was employed for 
enrichment analysis. VBM (version: VBM8) was used to process the imaging data. G*Power (version: 3.1) was employed for the power 
analyses. The primary code developed in the current study are available at GitHub: https://github.com/dichen27/. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data of the AHBA microarray dataset is available from the website (http://human. brain-map.org). The data of REST-meta-MDD project from the DIRECT 
Consortium is available from the website (http://www.rfmri.org/REST-meta-MDD). The data from the Japan DecNef Project is available from the website (https://
bicr.atr.jp/decnefpro/). The data from Second Xiangya Hospital within the ZIB Consortium is not available for public download, but access can be requested through 
the corresponding author J.F. (jffeng@fudan.edu.cn). Requests for raw and analyzed data will be promptly reviewed by the Fudan University ethics committee to 
verify whether the request is subject to any intellectual property or confidentiality obligations.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The self-reported 'sex' was used due to its biological attribution. The sex was regressed out as a covariate in our analyses. 

Population characteristics 1151 MDD patients and 1064 healthy control (HC) individuals from the REST-meta-MDD consortium(age 37.21 ± 14.64, 68% 
female for MDD; age 36.35 ± 15.53, 60% female for HC) were included as the discovery dataset. For two replication datasets, 
the Japan DecNef Project (nMDD = 253, nHC = 585, age 42.49 ± 11.99, 47% female for MDD; age 39.69 ± 15.48, 55% female 
for HC; “https://bicr.atr.jp/decnefpro/”) and the Second Xiangya Hospital study (nMDD = 385, nHC = 502, age 23.20 ± 6.42, 
68% female for MDD; age 21.45 ± 3.91, 64% female for HC) were also investigated.

Recruitment All individuals were recruited from multiple sites

Ethics oversight Ethical permission was approved by the medical research ethics committee, and informed consent was obtained from all 
participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Due to the absence of a thorough exploration of comprehensive effect size or power calculation for SuStaIn, we determined the sample size 
based on prior SuStaIn investigations (Yuchao et al., 2023, Nature Mental Health; Young et al., 2018, Nature Communications; Vogel et al., 
2021, Nature Medicine). These preceding studies suggested that approximately 30-40% of subjects would demonstrate measurable 
reductions in abnormal gray matter volume. Thus, it was imperative for us to analyze data from a minimum of 600 patients with MDD, and 
preferably exceeding 1000. We successfully achieved this objective.

Data exclusions Outliers (MDD outlier ratio = 125/1276 = 9.80%, HC outlier ratio = 37/1104 = 3.35% for the REST-meta-MDD consortium; MDD outlier ratio = 
2/255 = 0.78%, HC outlier ratio = 13/598 = 2.17% for the Japan DecNef Project; MDD outlier ratio = 14/400 = 3.50%, HC outlier ratio = 3/505 = 
0.59% for the Second Xiangya Hospital study) were identified if showing negative correlations with most of the rest of the individuals in terms 
of the whole brain structure patterns and hence removed.

Replication To cross-validate our findings, we then confirmed that our observed subtypes from our discovery data were robust across two independent 
datasets. The SuStaIn procedure with identical parameters was also conducted in two replication datasets from the Japan DecNef Project (253 
patients with MDD, 585 healthy controls) and the Second Xiangya Hospital (385 patients with MDD, 502 healthy controls) respectively.

Randomization This is not relevant because we did not conduct a controlled trial.  Instead, we merged individuals with MDD from different cohorts and 
employed a data-driven algorithm for subtyping. Subsequently, we performed comparisons of demographic and disease characteristics across 
these subtypes.

Blinding Blinding was not relevant for experiments because the SuStaIn is a data-driven method without the need of demographic or clinical data. The 
individuals responsible for gathering demographic and clinical data were unaware of the SuStaIn subtyping outcomes. Likewise, those 
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responsible for data preprocessing remained unaware of the demographic and clinical details. Thus, although the researchers were not 
personally blinded, the analysis itself remained effectively blinded.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration the registered trial ID: ChiCTR2000031931

Study protocol Available online: https://www.chictr.org.cn/showproj.html?proj=51913

Data collection Clinical data were obtained through interviews, while brain imaging data were generated from MRI scanning sessions. Please refer to 
the Method section for more details.

Outcomes The outcome is a clinical symptom assessed using the Hamilton Depression Rating Scale (HAMD).

Magnetic resonance imaging

Experimental design

Design type N/A

Design specifications N/A

Behavioral performance measures N/A

Acquisition

Imaging type(s) Structural

Field strength The field strength of the REST-meta-MDD project (http://www.rfmri.org/REST-meta-MDD), the Japan DecNef Project 
(https://bicr.atr.jp/decnefpro/) are available from the official website.

Sequence & imaging parameters The details of sequence parameters were provided in Methods.

Area of acquisition Whole brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Structural T1-weighted MRI brain scans were collected for each dataset. Using the VBM 8 toolbox (http://dbm.neuro.uni-
jena.de/vbm8/), the office of the REST-meta-MDD consortium conducted standard preprocessing as reported in previous 
studies. Aligned with the REST-meta-MDD consortium, similar image preprocessing was conducted for the Japan DecNef 
Project and the Second Xiangya Hospital study, and briefly described as follows: we first segmented the structural T1-
weighted MRI into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using a unified segmentation routine 
(http://www.neuro.uni-jena.de/vbm). We then employed the diffeomorphic anatomical registration through exponential lie 
(DARTEL) algebra tool  to transform individual native space into standard montreal neurological institute (MNI) space with 
1.5×1.5×1.5 mm resolution with an iterative registration. We modulated the gray matter maps by multiplying the linear and 
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nonlinear components of the Jacobian determinants, resulting in GM images.

Normalization Nonlinearly normalized to MNI space.

Normalization template MNI space

Noise and artifact removal N/A

Volume censoring N/A

Statistical modeling & inference

Model type and settings The SuStaIn model was used to perform disease progression modeling.

Effect(s) tested This is not relevant

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Automated Anatomical Labeling Atlas

Statistic type for inference
(See Eklund et al. 2016)

N/A

Correction Either permutation, false discover rate correction and Bonferroni correction was applied wherever applicable.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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