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Abstract

Motivation: Advances in neuroimaging and sequencing techniques provide an unprecedented

opportunity to map the function of brain regions and identify the roots of psychiatric diseases.

However, the results from most neuroimaging studies, i.e. activated clusters/regions or functional

connectivities between brain regions, frequently cannot be conveniently and systematically inter-

preted, rendering the biological meaning unclear.

Results: We describe a brain annotation toolbox that generates functional and genetic annotations

for neuroimaging results. The voxel-level functional description from the Neurosynth database and

gene expression profile from the Allen Human Brain Atlas are used to generate functional/genetic

information for region-level neuroimaging results. The validity of the approach is demonstrated by

showing that the functional and genetic annotations for specific brain regions are consistent with

each other; and further the region by region functional similarity network and genetic similarity net-

work are highly correlated for major brain atlases. One application of brain annotation toolbox is to

help provide functional/genetic annotations for newly discovered regions with unknown functions,

e.g. the 97 new regions identified in the Human Connectome Project. Importantly, this toolbox can

help understand differences between psychiatric patients and controls, and this is demonstrated

using schizophrenia and autism data, for which the functional and genetic annotations for the neu-

roimaging changes in patients are consistent with each other and help interpret the results.
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Availability and implementation: BAT is implemented as a free and open-source MATLAB toolbox

and is publicly available at http://123.56.224.61:1313/post/bat.

Contact: jianfeng64@gmail.com or jzhang080@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in non-invasive neuroimaging techniques have allowed in-

vestigation of the neural basis of human behavior (Bennett et al.,

2016; Spiers and Maguire, 2007) and to search for the roots of psy-

chiatric diseases (Abi-Dargham and Horga, 2016; Andreasen,

1988). Neuroimaging analysis generates results in clusters of voxels/

brain regions or in functional connectivity (FC) links between pairs

of voxels or brain areas with correlated activity. The biological in-

terpretation of these results, however, remains difficult, and we

often need to look up and summarize individual studies in the litera-

ture to find biological explanations. Since each study usually has a

small sample size and the results may be under powered and have a

high false discovery rate (Yarkoni, 2009; Yarkoni et al., 2010),

explanations based on these results may not be very reliable.

Recently, Neurosynth integrated results from tens of thousands of

neuroimaging investigations, providing more reliable mappings between

brain voxels and cognitive states than individual studies (Yarkoni et al.,

2011). Meanwhile, the Allen Human Brain Atlas (AHBA) was con-

structed and provided a comprehensive ‘all genes-all structure’ profile of

the human brain (Shen et al., 2012). These two datasets have provided

us with comprehensive knowledge for understanding the human brain

at multiple scales and with multiple types or modalities of investigation.

However, a huge gap still exists in using these data to interpret

neuroimaging results. The mappings between voxels to function in

Neurosynth, and to gene expression profiles in the Allen Brain Atlas are

fine-scale (voxel level) representations, which cannot directly provide

functional or genetic meaning for brain regions consisting of clusters of

voxels, or of the FCs between them. Therefore, for most neuroimaging

analyses that generate results in the form of multiple brain regions or

FCs, a rigorous statistical mapping from voxel-level representations

(either functional or genetic) to region-level knowledge is needed.

In this research, we developed the brain annotation toolbox (BAT),

which, when provided with voxel-level coordinates, transfers informa-

tion from Neurosynth about which functions are associated with those

coordinates, and from the AHBA about which genes are associated

with those coordinates. BAT can perform functional and genetic anno-

tation for many neuroimaging results, either in 3D-volume space or

2D-surface space, in the form of clusters/regions or FCs (see Fig.1 for

details). One appealing application is that BAT can provide functional

and genetic descriptors for different widely used brain atlases such as

Brodmann (Brodmann, 1909), Automated Anatomical Labeling Atlas

2 (AAL2) (Rolls et al., 2015) and Craddock 200 (Craddock et al.,

2012). And BAT can also help identify the potential genetic and func-

tional characteristics of newly discovered regions, such as the 97 brain

regions recently identified by the Human Connectome Project (HCP),

whose functional roles and genetic properties remain unclear (Glasser

et al., 2016; Yeo and Eickhoff, 2016).

2 Materials and methods

2.1 Functional annotation analysis for given clusters/

regions
The aim of the functional annotation analysis for clusters/regions

was to provide a functional explanation or interpretation for given

clusters/regions. The principle of our functional annotation analysis

was the same as the widely used gene enrichment analysis, which

assumes that the co-functioning genes for the abnormal biological

process underlying the study are more likely to be selected as a rele-

vant group by high-throughput screening techniques (Huang et al.,

2009a, b). Similarly, in neuroimaging research, voxels within a clus-

ter/region have a higher probability to be co-activated by the same

terms that are functionally related to the cluster/region, compared to

voxels selected at random. For a given term in the Neurosynth data-

base (details of the 217 Neurosynth terms we used and our selection

criteria are provided in the Supplementary Method), the extent of

activation of a given cluster/region was termed as the activation

ratio (ACR). Supposing there are xi activated voxels in the cluster/re-

gion i for the given term, the ACRi is calculated as Equation (1).

ACRi ¼
xi

Ni
(1)

where Ni is the number of voxels in the cluster/region i. It should be

noted that all of our functional and genetic annotation analysis are

at the group level.

Fig. 1. Flow chart of functional and genetic annotation analysis. (A) Upper

panel: the activation maps in MNI space for the 217 functional terms from the

Neurosynth database. Bottom panel: 3695 AHBA samples with gene expression

were employed and mapped to MNI space first. (B) Upper panel: the 217 activa-

tion maps in the MNI space were then mapped to the surface-based space by

registering to the Conte69 Human surface-based Atlas (details are provided in

the Supplementary Method). Bottom panel: the 3695 AHBA samples were map-

ping to the Conte69 Human surface-based Atlas as well. (C, D) Two general

forms of neuroimaging analysis results, i.e. clusters/regions (C) and functional

connectivities (D) (either in 3D MNI space or the 2D surface space) can be ana-

lyzed by the BAT. (E) BAT can perform functional annotation analysis for user-

provided neuroimaging results and provide the most-related functional terms.

(F) BAT can perform genetic annotation analysis for the user-provided neuroi-

maging results and identify the most correlated genetic correlates
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Further, the statistical significance of the activation was eval-

uated by either Fisher’s exact test or a non-parametric permutation

approach (performed by randomly selecting voxels within the brain

background mask. This background mask is specified by the user,

which involves the brain regions to which the user wishes to com-

pare the activated clusters/region). In the toolbox, functional anno-

tation analysis can be performed for a cluster/region consisting of a

single component with connected voxels (e.g. a single AAL2 region),

a cluster/region consisting of multiple connected components (e.g.

the activated clusters obtained from a specific task) and multiple

clusters/regions (e.g. multiple AAL2 regions).

For a single cluster/region i, the above two kinds of statistical

tests help users to infer which functional terms are significantly

related to it. The Fisher’s exact test is widely used in gene enrich-

ment analysis (Huang et al. 2009a,b; Rivals et al., 2007), and the

null hypothesis is that there is no relation between whether a voxel

lies within a cluster/region and whether the voxel is activated for a

given term. Under this null hypothesis, we can model the number of

voxels in a cluster/region that are activated by a given term by the

Hypergeometric distribution. Supposing there are x activated voxels

in the cluster/region i for the given term, we can get the P-value by

simply computing the probability of observing xi or more activated

voxels in the cluster/region i, see Equation (2) for details.

pi ¼ 1�
Xxi�1

s¼0

K
s

� �
M�K
Ni�s

� �

M
Ni

� � (2)

where Ni and M are the number of voxels in cluster/region i and the

background mask, respectively; and xi and K are the number of acti-

vated voxels in the cluster/region and the background.

For the statistical test based on a non-parametric permutation

test, three approaches are used, differentiated by the way in which

the spatial structure of the voxel in the cluster/region is considered.

The first one is the most efficient and is suitable for all forms of clus-

ter/regions. It randomly selects non-overlapping voxels within the

background (with the same number as those in the given clusters/

regions) and regardless of their spatial relationship. The second is

suitable for the clusters/regions consisting of a single spatially con-

nected component. For example, to annotate a region in the AAL2

template, we select the same number of voxels as that in the given

region and these voxels are also spatially adjacent in the back-

ground. The third is for the clusters/regions consisting of multiple

spatially connected components. In this case, we randomly select

non-overlapping connected components (with the same number as

that in the given cluster/region), each consisting of spatially adjacent

voxels (and with the same number as those in the components in the

given cluster/region) from the background. After determining the

voxel selection approach, BAT runs the permutation multiple times

(the number of permutations can be defined by the user), to get a null

distribution of the ACR for each term. The observed ACR is then com-

pared with the null distribution to get the corresponding P-value.

2.2 Genetic analysis for the clusters/regions
Based on the gene expression data from the AHBA, the BAT’s genetic

analysis for the clusters/regions can provide the whole genomic gene

expression profiles for the clusters/regions of interest and help to iden-

tify the differentially expressed genes (details of the gene expression

dataset and its pre-processing procedures are provided in the

Supplementary Method). For each AHBA tissue sample, we created a

6 mm sphere region of interest (ROI) centered on its Montreal

Neurological Institute (MNI) centroid coordinate and terms these

spheres as AHBA samples. The details for our genetic annotation ana-

lysis for clusters/regions are as follows.

First, with a given background mask, we retain AHBA samples

with more than 50% of voxels that are also present in the back-

ground mask to perform further analysis (we term these samples as

the background AHBA samples). Then, for each background AHBA

sample, we map it to one of the given clusters/regions, that which

has the largest number of overlapping voxels with this AHBA sam-

ple. The gene expression profile of each region/cluster is defined as

the average gene expression of all the samples mapped to the cluster/

region. We then adopt permutation analysis to identify the differen-

tially expressed genes in the given clusters/regions (compared with

samples in the background, the expression of the gene in the ROI is

significantly increased/decreased). Two methods are used for sample

selection in the background: (i) randomly selected AHBA samples

from the background without repetition, and (ii) randomly selected

AHBA samples in the background samples but not the ones that

were already mapped to the region/ROI. Then for each cluster/re-

gion in each permutation run, we randomly select the same number

of AHBA samples as those that are mapped to the cluster and calcu-

late the average gene expression profiles across all selected samples.

A null distribution for each gene was thereby obtained, allowing us

to rank each gene in its null distribution and got its corresponding

P-value for over-expression or down-expression.

2.3 Functional annotation analysis for FC
The BAT can also perform functional enrichment analysis for a FC

or set of FCs constituting a network. A difference from previous

analyses described for the BAT is that now the input data consist of

a set of significant FC links. For example, we can determine the

functions associated with the underlying FCs/networks identified by

either a ROI-based approach or a brain-wide association study

(BWAS). This is especially useful for the altered FCs identified in

case-control studies.

An image map for the regions that are connected by the FCs and

a list of all the FCs of interest are required to perform the analysis.

First, to measure to what degree two regions connected by a FC are

co-activated in a certain term, or task, we defined the co-activation

ratio (CAR) of a FC for a term. For a FC l that connects regions i

and j, its CAR for a specific functional term was calculated as

Equation (3), as follows:

CARl ¼
ACRi þ ACRj

2
if ACRi 6¼ 0 and ACRj 6¼ 0

0 if ACRi ¼ 0 or ACRj ¼ 0

8<
: (3)

where ACRi and ACRj is the ACR for regions i and j, respectively.

For a functional network consisting of L FCs, its extent of activa-

tion for a specific functional term is defined as the mean co-

activation ratio (MCAR), as defined in Equation (4).

MCAR ¼
PL

l¼1 CARl

L
(4)

where CARl is the CAR of the FC l which belongs to the network

for the term.

In calculating what is described in this paper as ‘functional con-

nectivity’, the activity of a node (i.e. a ROI such as an AAL2 area)

for a particular search term was represented by the ACR of the node

in that task. If in an analysis involving multiple FCs that some nodes

appear n times, then the activity of that node is weighted by the

number n so that its annotations contribute in this proportion to the

annotations for this set of FCs.
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Further, the significance of the network’s MCAR is assessed using

non-parametric permutation tests. Two methods for randomly selecting

the regions connected by the FCs are used. The first is suitable for a

brain network consisting of a moderate number of FCs (e.g. <20) and

in which the brain regions connected by the FCs only occupy a small

fraction of the brain (so that we can randomly select the same number

of non-overlapping regions from the background). Using this method, in

each permutation run, BAT randomly selects the same number of non-

overlapping regions consisting of the same number of adjacent voxels as

those in the resulting list from the background. The second method is

suitable for FCs that connect regions from whole-brain atlases, e.g. the

FCs obtained from regional-level brain-wide association analysis which

produce a network with a large number of FCs that cover most of the

brain. In such a situation, it is not feasible to randomly select the same

number of non-overlapping regions from the background. We then ran-

domly select the same number of regions as those in the FC list from the

whole-brain atlas being used. Given the permutation method, the

MACR of the FCs for each of the functional terms can be calculated

based on the randomly selected regions. The null distribution of the

MACR of the FCs for each of the functional terms is constructed after

running the permutation multiple times. Based on the null distribution

of a functional term, we can obtain a P-value for our observed MACR

as the proportion of permutations in which with the randomly produced

MACR is larger than the observed MACR.

2.4 Genetic analysis for the FCs
BAT can also identify genetic correlates for the given FCs, e.g. find-

ing genes that might regulate the functional co-activation between

two brain regions. First, the gene expression profile for each region

involved in the given FCs is obtained (the same as for the ‘Genetic

analysis for the clusters/regions’). For each FC, the co-expression

value (CEV) of a gene is defined as the outer product of its expres-

sion in these two regions (Hawrylycz et al., 2015). As we used the

normalized gene expression data (see Supplementary Material for

details), if the gene expression in the two regions connected by the

FC show high or low expression simultaneously, the gene will have

a high positive CEV for the FC, whereas if they show opposite ex-

pression patterns, the gene will have a large negative CEV. For a

functional network consisting of L FCs, we can use the mean co-

expression value (MCEV) as defined in Equation (5) to represent the

co-expression pattern of the gene for the function network.

MCEV ¼
PL

l¼1 CEVl

N
(5)

where CEVl is the CEV of the gene for the FC l which belong to the

network.

Permutation analysis was applied to estimate the significance of

the MCEV for each gene: first, in each permutation run, for each re-

gion in the FC list, we randomly select the same number of AHBA

samples from the background as those mapped to the regions of the

given FCs without repetition and calculate a new gene expression

profile for the region, based on which we can obtain the MCEV for

each gene. A P-value for the real MCEV was obtained for each gene.

3 Results

3.1 Functional and genetic annotation for well-known

brain atlases
Using BAT, we performed functional and genetic annotation ana-

lysis for several widely known brain atlases, including the

Brodmann (Brodmann, 1909), AAL2 (Rolls et al., 2015), the new

HCP atlas (Glasser et al., 2016), Power 264 (Power et al., 2011) and

Craddock 200 (Craddock et al., 2012), as detailed in Supplementary

Table S3.

In particular, we highlight here the annotation results for

Brodmann areas. We manually compared the functional annotation

for 32 Brodmann areas (with significant annotation results, i.e. the

region had at least one significant functional annotation by permu-

tation test, P < 0.05) with those summarized in Wikipedia (wiki)

(https://en.wikipedia.org/), to validate our approach. The annota-

tions for all 32 regions provided by BAT were in agreement with

those in wiki, i.e. there was a large extent of overlap between the

functions we identified in these regions and those described in wiki,

see Supplementary Table S4. The annotation results for other atlases

can be found at our website (http://123.56.224.61/softwares). The

functional and genetic annotations provided by BAT provide a valu-

able complement to these widely used atlases.

3.2 Functional and genetic annotation for the new brain

atlas from HCP
In addition to traditional brain atlases, we also applied BAT to the re-

cent HCP Brain Atlas (Glasser et al., 2016). Using multi-modal data

from the HCP, each hemisphere of the human cerebral cortex was par-

cellated into 180 different cortical areas. Among the 180 areas, 83 are

consistent with previous reports, and 97 were newly identified in the

HCP. This was an important advance, but did not address the genetic

features underlying the 180 cortical areas, nor in detail the functions of

each of the cortical areas (Yeo and Eickhoff, 2016).

To illustrate the information that BAT makes available for the

180 cortical areas in the HCP Brain Atlas, we describe the

results for two selected areas: one is the hippocampus, and the other

is a cortical area newly identified with the HCP Brain Atlas, the

‘Middle Insular Area’ (MI). As the functional and genetic annota-

tions for the two regions are all available for the left hemisphere,

here we focus on the left Hippocampus and MI, with details in

Figure 2.

For the Hippocampus, 17 out of 217 functional terms, including

‘memory’, ‘episodic memory’, ‘navigation’, ‘recall’, ‘learning task’

etc. were found to be significantly associated with the hippocampus

(P < 0.05, permutation test) (Fig. 2 and Supplementary Table S5).

For genes, 4839 genes were found to be significantly over-expressed

(i.e. genes expressed in this brain region or cluster or clusters more

than in the rest of the brain) (P < 0.05, Bonferroni corrected). Gene

enrichment analysis of these genes [using the software Toppgene

(Chen et al., 2009)] revealed that processes such as ‘learning or

memory’ [P ¼ 1.31e�4, Benjamini-Hochberg’s False Discovery

Rate procedure (BHFDR) corrected], ‘learning’ (P ¼ 5.10e�3,

BHFDR corrected) and ‘memory’ (P ¼7.83e�3, BHFDR corrected)

are significantly associated with these genes. The biological gene

pathway ‘long-term potentiation’ underlying learning and memory

was also found to be significantly enriched. These genes are also

related to abnormal mouse phenotypes, such as ‘abnormal synaptic

transmission’, ‘abnormal long-term potentiation’ and ‘abnormal

synaptic plasticity’.

Next, we summarize the results for a newly discovered cortical

area, the MI, which is part of the insular cortex. BAT identified 105

out of 217 functional terms that were significantly related to activa-

tions produced in the MI area (P < 0.05, permutation test). Among

the 105 functional terms, 12 could survive Bonferroni correction,

including ‘affective’, ‘awareness’, ‘reward’, ‘self’, ‘salience’, ‘pain’,

‘schizophrenia’, ‘somatosensory’ and so on. For genes, we found

that 415 genes were significantly over-expressed in the MI area
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(P < 0.05, Bonferroni corrected), significantly enriched in pathways

that included the ‘dopamine signaling pathway’ (P ¼ 8.87e�3,

BHFDR corrected) and ‘FGF signaling pathway’ (P ¼ 1.30e�2,

BHFDR corrected). Interestingly, almost all the functional terms

identified above were related to the dopamine pathway, the same as

in the genetic annotation, suggesting consistency between the func-

tional and genetic annotation, and thus verifying the usefulness of

our approach. Detailed results for these two regions are provided in

Supplementary Table S5.

3.3 Functional and genetic annotations for abnormal

clusters identified in autism
To illustrate how BAT can help to gain insight into the biological

meaning of neuroimaging results, we performed a functional and

genetic annotation analysis for the clusters obtained in a BWAS of

FC for autism (Cheng et al., 2015), in which a statistical map is

obtained by meta-analysis (with the Liptak–Stouffer Z-score ap-

proach) that integrates BWAS results from 16 imaging sites (418

patients and 509 controls). Then, Gaussian random field correction

(cluster defining threshold: absolute Z ¼ 5.5, cluster size P < 0.05)

was performed and 23 clusters consisting of voxels that had signifi-

cant FC changes were obtained.

We then fed these clusters to BAT, and found they are function-

ally enriched in ‘autism’ and autism-related functional terms includ-

ing ‘communication’, ‘self’, ‘social’, ‘theory of mind’, etc. For

genetic analysis, 1117 genes were found to be significantly over-

expressed in the above clusters (P < 0.05, Bonferroni corrected),

which were also significantly enriched in ‘Autism Spectrum

Disorders’ (P¼6.26e�04, BHFDR corrected) and biological proc-

esses closely related to autism, such as ‘synaptic signaling’

(P¼6.63e�16, BHFDR corrected) (Zoghbi and Bear, 2012),

‘neurogenesis’ (P¼3.40e�11, BHFDR corrected) (Wegiel et al.,

2010), etc. Interestingly, these clusters were functionally and genet-

ically enriched in several other psychiatric diseases such as schizo-

phrenia and depression, indicating common genetic factors

underlying these mental disorders (Smoller et al., 2013), detailed in

Supplementary Table S7. All the above functional and genetic anno-

tation results are summarized in Figure 3.

3.4 Functional and genetic annotations for altered

functional connectivities and networks in schizophrenia
To illustrate BAT’s capability in helping to analyze neuroimaging

results in the form of FC (or a brain network defined by a set of

FCs), we further used BAT to perform functional and genetic ana-

lysis on the significantly changed FCs identified in chronic schizo-

phrenia patients (Li et al., 2017). A resting-state brain-wide

association analysis was performed on multiple sites (with a total of

789 participants including 360 patients) (Li et al., 2017), and the

results were integrated by meta-analysis. We performed BAT on the

89 FCs that were significantly increased in chronic schizophrenia

compared to controls.

We found that this dysregulated network of 89 FCs is significant-

ly enriched in 43 functional terms (permutation test, P < 0.05),

including ‘schizophrenia’ (P ¼ 0.0349). Interestingly, these signifi-

cantly increased FCs were also found to be significantly correlated

with hallucination (P ¼ 0.0081), which is an item in the Positive

subscale of the Positive and Negative Syndrome Scale score (Li

et al., 2017). In addition, several other terms related to cognitive

processes were also found to be significantly enriched, including ‘at-

tention’ and ‘memory’, detailed in Supplementary Table S8. These

cognitive functions are known to be impaired in patients with

schizophrenia (Aleman et al., 1999; Carter et al., 2010). Finally, of

all the identified functional terms, ‘sleep’ was the most significant

Fig. 3. The functional and genetic annotation for clusters obtained from the

autism BWAS results. A total of 83 functional terms were found to be signifi-

cantly related to the clusters, including ‘Autism’ and several autism-related

symptoms such as ‘autobiographical memory’, ‘communication’, ‘self-refer-

ential’, ‘theory of mind’ and so on. Several Neurosynth terms for mental dis-

eases, e.g. ‘Bipolar disorder’, ‘Schizophrenia’ and ‘Depression’ were also

found to be significant. For genetic analysis, 1117 genes were identified to be

over-expressed, which are also functionally enriched in the disease terms

‘Autistic Disorder’ and ‘Autism Spectrum Disorders’, and several autism-

related GO biological processes and pathways. The gene enrichment analysis

was performed using the Toppgene software

Fig. 2. Illustration of the functional and genetic annotations of two cortical

areas in the HCP Brain Atlas. (A) Left Hippocampus: 17 functional terms,

including memory-related ones such as ‘memory’, ‘recognition memory’ and

‘Semantic memory’, were found to be significantly associated with the left

hippocampus. For genes, 4839 genes were found to be over-expressed

including BDNF. Gene enrichment analysis shows that these genes are

enriched in memory and learning related GO biological processes such as

‘Learning’, ‘Memory’ and ‘Long term potentiation’. (B) Left MI area: 105 func-

tional terms were found to be significantly related to the MI area, ‘affective’,

‘awareness’ ‘reward’, ‘self’, ‘salience’, ‘pain’ ‘schizophrenia’ and ‘somatosen-

sory’ are among the 12 that can survive Bonferroni correction. A total of 415

genes were over-expressed in the MI area and enriched in the dopamine sig-

naling pathway and fibroblast growth factor signaling pathway
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(P < 1e�4). Disturbed sleep is frequently encountered in patients

with schizophrenia and is an important part of its pathophysiology

(Cohrs, 2008).

For the genetic analysis, we selected those FCs whose associated

brain regions had more than 5 AHBA samples, and this left 47 of

the 89 FCs for genetic analysis. In total, 1523 genes were identified

to be significantly co-expressed (P < 0.05, Bonferroni corrected) in

the regions connected by these 47 FCs. These genes were significant-

ly enriched in biological terms such as ‘brain development’

(P ¼ 1.31e�5, BHFDR corrected), and ‘neurogenesis’

(P ¼ 2.43e�5, BHFDR corrected), which are known to underlie the

pathology of schizophrenia. Importantly, these genes were signifi-

cantly enriched in the disease term ‘schizophrenia’ (P ¼ 4.49e�3,

BHFDR corrected), and were enriched in the mouse phenotypes

involving ‘abnormal sleep behavior’ (P ¼ 3.35e�2, BHFDR cor-

rected), ‘sleep disorders’ (P ¼ 2.26e�2, BHFDR corrected), see

Figure 4.

In summary, the functional and genetic terms identified from the

dysregulated network were both cross-validated, and highly consist-

ent with the current understanding of schizophrenia, providing fur-

ther evidence for the validity of the approach described here.

4 Discussion

Advanced neuroimaging techniques such as functional magnetic res-

onance imaging have generated gigantic neuroimaging data crucial

for understanding the neural basis of behavior and for exploring the

pathology of psychiatric disease. However, the results obtained in

neuroimaging analysis, usually in the forms of clusters of voxels/

brain regions or functional connectivities/networks, often remain

hard to explain. In this research, we presented a toolbox that can

provide functional and genetic annotations for brain atlas or neuroi-

maging results in the form of activation maps or FC, which is

expected to shed insights into the biological meaning underlying

these results.

In the field of bioinformatics, such an annotation analysis, gene

functional enrichment analysis has already been employed to sys-

tematically dissect large ‘interesting’ gene lists from the high-

throughput studies, and furthermore identify the most relevant bio-

logical processes (Huang et al. 2009a,b), based on the large amount

of biological knowledge accumulated in public databases, i.e. Gene

Ontology (GO). During the past decades, hundreds of gene func-

tional enrichment analysis tools have been developed and employed

by tens of thousands of high-throughput studies, providing valuable

insights into the underlying biological meaning of the gene analysis

results.

In sharp contrast, in the neuroimaging field, large databases such

as Neurosynth (Yarkoni et al., 2011) and AHBA (Hawrylycz et al.,

2012), have only recently been developed to provide functional/gen-

etic knowledge for the human brain at the voxel level. However,

tools for ‘enrichment analysis’ of neuroimaging results are still lack-

ing. Inspired by gene enrichment analysis, we developed the BAT

toolbox, which employs brain voxel-level functional and genetic

knowledge to help systemically explore the region-level neuroimag-

ing results (i.e. clusters/regions, or FCs).

BAT provides a novel method to harness the data from the

Neurosynth and AHBA to perform functional and genetic annota-

tion analysis for clusters/regions and FCs results, respectively. A

user-friendly MATLAB GUI and 3D visual interface are also pro-

vided for users’ convenience. We present four examples (for clusters/

regions and FCs) in the Section 3 to illustrate the reliability of our

annotation approach and to illustrate how to use BAT to search for

the underlying biological meaning of the real neuroimaging results.

It is noted that ‘Neurosynth’ also employed AHBA to identify the

molecules that may participate in specific psychological or cognitive

processes (‘Neurosynth-Gene’: http://neurosynth.org/genes/) (Fox

et al., 2014). However, it differs significantly from our approach in

the following aspects: (i) the goal of ‘Neurosynth-Gene’ is to map in-

dividual cognitive phenomena to molecular processes, while the goal

of BAT is to provide functional and genetic annotations for exten-

sive neuroimaging results not necessarily confined to cognitive proc-

esses, e.g. from case-control studies. (ii) BAT can provide functional

and genetic annotations and corresponding P-values for neuroimag-

ing results in the form of FC or networks generated by whole-brain

network analysis, which is widely used in the neuroimaging com-

munities. This is not provided by ‘Neurosynth-Gene’.

In developing the functional and genetic annotation methods, we

took into account factors that might affect the results. Firstly, in the gen-

etic analysis, in order to confirm that the size of the ROI does not sig-

nificantly affect our genetic annotation results, we use 3, 6 and 9 mm

spheres to define the ABHA samples and performed the genetic annota-

tion analysis for regions in the AAL2 atlas. We found that the gene ex-

pression profiles for a certain region obtained using different ROI sizes

were all highly correlated (3–6 mm: 0.98 6 0.02; 6–9 mm:

0.97 6 0.03; 3–9 mm: 0.96 6 0.04). In addition, the region–region gen-

etic similarity network obtained using the regional expression profiles

from different ROI size were almost identical, see Supplementary Figure

S2. All these results confirm that our genetic annotation results based

on the regional expression profiles are not significantly affected by the

ROI size. Secondly, in order to confirm that the results using permuta-

tion methods are stable and further assess the reproducibility of our

method itself, we run functional and genetic annotation analysis for the

abnormal clusters identified in autism and altered functional network in

schizophrenia 10 times using the same parameters as previously used.

The Pearson correlation of P-values between each two of the 10 runs is

highly correlated for functional and genetic annotation analysis (func-

tional annotation: 0.9943 6 0.0001 and 0.9921 6 0.0002; genetic an-

notation: 0.9999 6 6.17e�10 and 0.9999 6 2.19e�9). These results

indicate that our results are not significantly affected by different per-

mutation runs.

Fig. 4. Functional and genetic annotation results for the significantly

increased FCs identified from chronic schizophrenia. The 89 increased FCs

are significantly enriched in 43 functional terms including ‘schizophrenia’ and

‘hallucination’, ‘attention’ and ‘memory’. A total of 1523 genes were identified

to be significantly co-expressed in the regions connected by these FCs. These

genes were significantly enriched in biological terms such as ‘brain develop-

ment’ and ‘neurogenesis’
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One attractive function of BAT is to help explore the newly

discovered regions identified by neuroimaging technology, with un-

known functions and genetic basis. We use the new parcellation of

the human cortex provided by HCP as an example (Glasser et al.,

2016). The 180 cortical areas in the parcellation are distinguished

by multi-modal data including anatomical measurements, task-

related functional magnetic resonance imaging of seven tasks and

resting-state FC in a subject cohort of 210 healthy young adults.

This parcellation for the human cortex is at the highest resolution to

date, but neither the function nor the genetic characterization of the

180 regions, especially for the 97 newly discovery regions, are clear-

ly known. BAT can partly solve the problem: it can provide a com-

plementary functional and genetic interpretation for the

parcellation, and researchers using the new brain parcellation in

their studies can use BAT to help explore the biological meaning of

their results.

We now explain why functional and genetic annotations contain

similar items for a number of brain regions. Previous investigations

have identified the similarity between the gene co-expression net-

work and resting-state functional network across regions, suggesting

that the functional brain network is underpinned by the gene co-

expression network (Krienen et al., 2016; Richiardi et al., 2015). To

further validate our functional and genetic annotation, we used

regions selected from the Brodmann, HCP, AAL2 and Cradock

atlases and computed similarity matrices between all pairs of regions

for the genetic and for the functional annotations. We found that

these two similarity matrices corresponded significantly, as

described next. We compared the following two networks: region

by region co-activation networks, and region by region gene co-

expression networks, for a given brain atlas. The former was con-

structed by calculating the Pearson correlation coefficient between

the ACRs (of all 217 search terms or tasks) for each pair of brain

regions; and the latter was obtained by calculating the Pearson cor-

relation between the gene expression profile for each pair of brain

regions. We found that the functional and genetic similarity matrices

were significantly correlated, and this was found for all the brain

atlases (see Fig. 5; AAL2: r ¼ 0.310, P ¼ 2.9947e�78; BA

r ¼ 0.423, P ¼ 2.87e�30; CRAD r ¼ 0.272, P ¼ 7.90e�121; HCP

r ¼ 0.264, P ¼ 7.44e�78) adopted in this work, indicating that two

brain regions with similar genetic expression profiles are more likely

to have similar activation patterns.

BAT has a few limitations. First, selection bias caused by limita-

tions in the data sources might introduced potential false positive

results. The functional annotation analysis of BAT is based on the

217 selected functional terms for Neurosynth, which does not in-

volve all the functional terms associated with all brain areas. For the

genetic annotation analysis, the samples from the AHBA do not

cover the whole-brain. Therefore, for regions/clusters or FCs that do

not have enough AHBA samples (e.g. <5 samples) mapped to them,

genetic analysis is not possible. Another important issue is the spa-

tial dependence of the neuroimaging data. Although we provided a

method to take this into account in the functional analysis, in our

genetic analysis we could not do this as the AHBA samples were not

evenly distributed across the whole-brain. Further efforts could in-

volve integrating activation maps from all available meta-analysis

databases [such as Brainmap (Fox and Lancaster, 2002)], reliable

brain network parcellations obtained from large-scale neuroimaging

datasets or meta-analysis [e.g. we provided the network-level anno-

tation results for the altered FCs in schizophrenia patients (Section

3.4) based on Yeo’s 7 and 17 networks (Yeo et al., 2011) as an ex-

ample, details in Supplementary Table S9] and gene expression pro-

files [such as that from Gene Expression Omnibus (Edgar et al.,

2002)], to avoid potential selection bias and provide a more compre-

hensive and reliable functional and genetic annotation for neuroi-

maging analysis. Secondly, it should be noted that we do not

analyze the directed relationship between behavior-brain imaging-

genetics in BAT, as the mediation analysis can only be performed

using data at the individual level. However, our toolbox can provide

candidate genes for further mediation analysis if behavior, neuroi-

maging and genetic data are available at the individual level. In add-

ition to help users identify candidate genes, we also provide the

whole genomic gene expression profiles associated with the ROI in

the brain (such as clusters or regions linked by a FC), with which the

users can perform further analysis, i.e. gene co-expression analysis.

To sum up, the main aim of BAT is to provide a tool in the neuroi-

maging field, whose role is similar to that of gene enrichment tools

in omics data analysis. It can provide potential functional and genet-

ic correlates of the neuroimaging results and guide researchers in

designing further experiments. Moreover, in BAT the significance

levels can be set by users to levels that make the results reliable. An

advantage of BAT is that the MATLAB source code is provided with

the toolbox, allowing users to understand what is being computed,

and to enable users to develop further enhancements.
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