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a b s t r a c t 

The identification of connexel-wise associations, which involves examining functional connectivities be- 

tween pairwise voxels across the whole brain, is both statistically and computationally challenging. Al- 

though such a connexel-wise methodology has recently been adopted by brain-wide association studies 

(BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and 

depression, the multiple correction and power analysis methods designed specifically for connexel-wise 

analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework 

for connexel-wise significance testing based on the Gaussian random field theory. It includes control- 

ling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference meth- 

ods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can 

control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. 

Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate 

and increase statistical power by appropriately utilizing the spatial information of fMRI data. Impor- 

tantly, our method bypasses the need of non-parametric permutation to correct for multiple compar- 

ison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our 

method is shown in a case-control study. Our approach can identify altered functional connectivities in 

a major depression disorder dataset, whereas existing methods fail. A software package is available at 

https://github.com/weikanggong/BWAS . 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The human brain connectome is usually modeled as a net-

ork. In the brain’s network, accurately locating the connectiv-

ty variations associated with phenotypes, such as clinical symp-

oms, is critical for neuroscientists. With the development of neu-

oimaging technology and an increasing number of publicly avail-

ble datasets, such as the 10 0 0 Functional Connectomes Project

FCP) ( Biswal et al., 2010 ), Human Connectome Project (HCP)

 Glasser et al., 2016 ) and UK-Biobank ( Miller et al., 2016 ), large-
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cale, image-based association studies have become possible and

hould help us improve our understanding of human brain func-

ions. 

Using a priori knowledge of brain parcellation (e.g. Automated

natomical Labeling atlas, Rolls et al., 2015 ) or an adoption of

ata-driven parcellation (e.g. Independent Component Analysis, 

eckmann and Smith, 2004 ) to analyze the human connectome

s the most popular approach, and many statistical methods have

een designed for them ( Zalesky et al., 2012; Kim et al., 2014 ).

owever, methods that designed specifically for voxel-level con-

ectivity analysis are still lacking. Therefore, in this paper, a sta-

istical framework for brain-wide association study (BWAS) is pro-

osed ( Cheng et al., 2015a; 2015b; 2016 ). It directly uses voxels as

odes to define brain networks, and then tests the associations of

ach functional connectivity with phenotypes. 

https://doi.org/10.1016/j.media.2018.03.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.03.014&domain=pdf
https://github.com/weikanggong/BWAS
mailto:jianfeng64@gmail.com
https://doi.org/10.1016/j.media.2018.03.014
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To conduct a systematic, fully-powered BWAS, two main issues

should be carefully addressed. First, a multiple correction method

to control the false-positive rate of massive univariate statistical

tests should be developed. Second, a power analysis method to es-

timate the required sample size should be designed. One may ask

whether the methods widely used in region-level studies can be

directly generalized to connexel-level studies. Two issues hinder

such a direct generalization. First, the statistical tests have more

complex spatial structures in BWAS. Therefore, as shown in our

analysis, some widely-used multiple correction methods, which do

not utilize the spatial information of data (e.g. Bonferroni correc-

tion and false discovery rate (FDR), Benjamini and Hochberg, 1995;

Benjamini and Yekutieli, 2001 ), may not be powerful enough to de-

tect signals. Second, although non-parametric permutation meth-

ods ( Nichols and Holmes, 2002 ) may account for the complex

structures among hypothesis tests to provide a valid threshold,

they are computationally very expensive in connexel-wise studies,

owing to the requirement of performing billions of statistical tests.

Therefore, an accurate and efficient method for multiple compari-

son problem and power analysis is needed. 

Random field theory (RFT) is an important statistical tool in

brain image analysis, and it has been widely used in the anal-

ysis of task fMRI data ( Penny et al., 2011 ) and structure data

( Ashburner and Friston, 20 0 0 ). Statistical parametric maps (SPM)

are usually modeled as a discrete sampling of smooth Gaussian or

related random fields ( Penny et al., 2011 ). The random field the-

ory can control the FWER of multiple hypothesis testings by eval-

uating whether the observed test statistic, or the spatial extent of

clusters exceeding a cluster-defining threshold (CDT), is large by

chance, which is known as peak-level and cluster-level inference

respectively. Since Adler’s early work on the geometry of random

field ( Adler, 1981; Adler and Taylor, 2009 ), theoretical results for

different types of random fields have been obtained, such as Gaus-

sian random field ( Friston et al., 1994; Worsley et al., 1996 ), t, χ2 ,

F random fields ( Worsley, 1994; Cao, 1999 ), multivariate random

field ( Taylor and Worsley, 2008 ), cross-correlation random field

( Cao et al., 1999 ). Among them, only the cross-correlation field is

designed for connectivity analysis. In that framework, the voxel-

level functional network is modeled as a six-dimensional cross-

correlation random field, and the maximum distribution of the

random field is used to identify strong between-voxel connections.

Different from the above works, the aim of BWAS is to identify

connectivities that are associated with phenotypes. To the best of

our knowledge, no previous works have addressed this problem. In

this paper, we show that the statistical map of BWAS, under the

null hypothesis, can be modeled as a Gaussian random field with

a suitable smoothness adjustment. Therefore, topological inference

methods, such as peak intensity and cluster extent, are generalized

from voxel-wise analysis to functional connectivity analysis. 

Besides controlling the type I error rate, estimating power and

the required sample size for BWAS are also important. In genet-

ics, for example, a high-quality GWAS analyzing one million single

nucleotide polymorphism (SNP) usually requires tens of thousands

of samples to reach adequate statistical power. In contrast, previ-

ous BWAS analyses of schizophrenia, autism and depression have

only had sample sizes less than one thousand ( Cheng et al., 2015a;

2015b; 2016 ). Therefore, compared to GWAS, it is natural to ask if

BWAS, which is usually based on a limited sample size, can with-

stand the rigors of a large number of hypothesis tests. In this re-

gard, most existing power analysis methods are designed for voxel-

wise fMRI studies, including, for example, the simulation based

method ( Desmond and Glover, 2002 ), the non-central distribu-

tion based method ( Mumford and Nichols, 2008 ), and the method

based on non-central random field theory (ncRFT) ( Hayasaka et al.,

2007 ). Among them, the ncRFT-based method can both take into

account the spatial structure of fMRI data and avoid time con-
uming simulation. Therefore, to analyze the power of BWAS, we

dopted a methodology similar to that of the ncRFT-based method

 Hayasaka et al., 2007 ). The signals at functional connectivities are

odeled as a non-central Gaussian random field, and the power is

stimated by a modified Gaussian random field theory. 

In this paper, a powerful method to address the multiple com-

arison problem is proposed for BWAS ( Fig. 1 ). This method uses

aussian random field theory to model the spatial structure of

oxel-level connectome. It can test the odds that either the effect

ize of every single functional connectivity (peak-level inference)

r the spatial extent of functional connectivity clusters exceed-

ng a cluster-defining threshold (cluster-level inference) is large by

hance. The performance of the method is tested in two resting-

tate fMRI datasets, and in both volume-based and surface-based

MRI data. Our method can control the false-positive rate accu-

ately. Compared with Bonferroni correction and false discovery

ate (FDR) approaches, our method can achieve a higher power

nd filter out false-positive connectivities by utilizing the spatial

nformation. In addition, we develop a method to approximate the

ower of peak-level inference by a modified Gaussian random field

heory ( Fig. 2 ). Power can be estimated in any specific location of

onnectome efficiently, which can help to determine the sample

ize for BWAS. The utility of our method is shown by identify-

ng altered functional connectivities and estimating the required

ample sizes in major depression disorder. The software package

or BWAS can be downloaded at https://github.com/weikanggong/

WAS . 

. Material and methods 

.1. Connexel-wise general linear model 

The popular general linear model approach is used in BWAS.

riefly, a voxel-level functional network is estimated for each sub-

ect using the fMRI data, and the association between each func-

ional connectivity and phenotype of interest is tested using the

eneral linear model. 

In detail, the individual functional network is constructed first

y calculating the Pearson correlation coefficients (PCC) between

very pair of voxel time series. Let m be the number of voxels, s be

he subject, and R (s ) = [ r (s ) 
i j 

] m ×m 

be the m × m functional network

atrix for subject s . Each element of R ( s ) is the correlation coeffi-

ient between voxel time series i and j for subject s . An element-

ise Fisher’s Z transformation is then applied as Z (s ) = [ z (s ) 
i j 

] m ×m 

=
 

1 
2 log 

( 1+ r (s ) 
i j 

1 −r 
(s ) 
i j 

)] 
m ×m 

, so that z (s ) 
i j 

will approximate a normal distri-

ution. For every functional connectivity, a general linear model

GLM) is fitted by 

 i j = X B i j + εi j 

here, Y i j = (z (1) 
i j 

, z (2) 
i j 

, . . . , z (n ) 
i j 

) is an n × 1 vector of functional con-

ectivities between voxel i and j across n subjects, X is the com-

on n × q design matrix, B i j = (β1 
i j 
, β2 

i j 
, . . . , βq 

i j 
) is a q × 1 vector of

egression coefficients, and ε ij is an n × 1 vector of random error,

hich is assumed to be an independent and identically distributed

aussian random variable N(0 , σ 2 
i j 
) across subjects. The ordinary

east square estimator for B ij is ˆ B i j = (X ′ X ) −1 X ′ Y i j , and for σ 2 
i j 
, it

s ˆ σ 2 
i j 

= (Y i j − X ̂  B i j ) 
′ (Y i j − X ̂  B i j ) / (n − q ) . Then, a Student’s t -statistic

t functional connectivity between voxel i and j can be expressed

s: 

 i j = 

c ̂  B i j 

(c (X 

′ X ) −1 c ′ ˆ σ 2 
i j 
) 

1 
2 

https://github.com/weikanggong/BWAS


W. Gong et al. / Medical Image Analysis 47 (2018) 15–30 17 

Fig. 1. A flow chart of brain-wide association study. First, we estimate the voxel-level brain network for each individual. Then, we perform connectivity-wise statistical tests 

to test the association between each functional connectivity and a phenotype of interest. Finally, peak- and cluster-inference approaches are used to identify significant 

signals. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Fig. 2. Power analysis for brain-wide association study. To estimate power, we first calculate the FWER-corrected threshold Z α of peak-level inference, and then estimate the 

effect size γ from a prior statistical map of BWAS. For a target sample size n , and a smoothness level FWHM, we can estimate the power using the random field theory. 

The power is defined as the probability of finding at least one true-positive signal in a region, in which the false-positive rate α is controlled at a certain level in the whole 

search region. Finally, the power under different sample sizes and smoothness levels can be estimated iteratively. (For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article.) 
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here c is a 1 × q contrast vector. In BWAS, let β1 
i j 

be the primary

ariable of interest, and β2 
i j 
, . . . , βq 

i j 
be the nuisance covariates in-

luded in the regression model. The contrast c = (1 , 0 , . . . , 0) will

e used to test the hypothesis β1 
i j 

= 0 , and the T ij -statistics will re-

ect the significance of the primary variable. Other contrasts can

lso be used depending on the study design. Finally, the Student’s

 random variable at each functional connectivity T ij is transformed

s  
o a Gaussian random variable Z ij by transforming t -statistics to p -

alues and then to Z -statistics. 

After the above steps, the connexel-wise Z -statistics form a sta-

istical parametric map in a six-dimensional Euclidian space. The

eason is that the spatial location of each Z statistic (or functional

onnectivity) can be uniquely represented by the coordinates of its

wo endpoints, each of which is a voxel in a three-dimensional

pace. Therefore, the structure of the statistical map can be mod-
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eled by the random field theory, and the topological inference

methods for multiple hypothesis testings are developed in the sub-

sequent section. 

2.2. Multiple comparison correction using topological inference 

methods 

2.2.1. Peak-level inference 

Peak-level inference controls FWER among multiple hypothesis

testings on functional connectivities, i.e., the probability of finding

at least one false-positive functional connectivity is controlled un-

der certain level α. It is assumed, under the null hypothesis, that

the statistical parametric map of BWAS is a discrete sampling of

smooth and stationary Gaussian random field with mean zero and

variance one. To control the FWER of multiple hypothesis testings,

the maximum distribution of the random field should be known.

In our paper, its tail distribution is approximated by the expected

Euler characteristic (EC) of the excursion set of random field ( Adler

and Taylor, 2009; Worsley et al., 1996 ). The detailed derivation is

given in the appendix section. We sketch an overview of the result

here. 

Let Z(p, q ) , p ∈ P, q ∈ Q be a ( P + Q )-dimensional Gaussian ran-

dom field spanned by a P -dimensional random field P and a Q -

dimensional random field Q . At high threshold z 0 , its maximum

distribution has a general form: 

α = P ( max Z(p, q ) > z 0 ) ≈ E (EC) 

= 

P+ Q ∑ 

d=0 

μd (P × Q ) ρZ 
d (z 0 ) 

= 

P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) ρZ 
i + j (z 0 ) 

(1)

where the μd ( · ) is the d -th dimensional intrinsic volume of the

random field, and ρZ 
d 
(z 0 ) is the d -th dimensional EC-density for

the Gaussian random field at threshold z 0 ( z 0 > 0). The methods

for calculating μd ( · ) and ρZ 
d 
(·) are shown in Appendix B and a

proof of Eq. (1) is shown in Appendix D . Therefore, the α-level

FWER-corrected threshold z 0 can be found using Eq. (1) , and for

one-tailed tests, functional connectivities with Z -values larger than

z 0 (or smaller than −z 0 ) are declared as significant. 

For different kinds of BWAS analysis, P and Q in Eq. (1) can

take different values. For example, for the widely-used volume-

based fMRI data, we use P = Q = 3. If the connectivities are estimated

between pairwise vertices on cortical surface, we use P = Q = 2,

and if the connectivities are estimated between subcortical struc-

tures and cortical surface, we use P = 3 and Q = 2. The estimated

FWER-corrected threshold is usually less conservative than Bon-

ferroni correction method, because the intrinsic volume μd ( · ) in

Eq. (1) takes into account both the number of hypothesis tests per-

formed and the correlations among tests, and an increasing of spa-

tial smoothness can make the FWER-corrected threshold z 0 lower.

For BWAS, Eq. (1) can be approximately estimated using the re-

sults of Gaussian random field, provided that the spatial smooth-

ness is estimated correctly. The reason is that the statistical map

of BWAS is generated by a series of non-linear transformation of

original fMRI images. As a result, we calculate Eq. (1) as: 

α = P ( max Z(p, q ) > z 0 ) 

≈
P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) 
(2 π) −

i + j+1 
2 (4 log 2) 

i + j 
2 

FWHM 

i + j 
Z 

× e −
z 2 
0 
2 

� i + j−1 
2 � ∑ 

k =0 

(−1) k 
(2 k )! 

k !2 

k 

(
i + j − 1 

2 k 

)
z d−1 −2 k 

0 (2)
here FWHM Z is the adjusted full-width at half maximum of

he Gaussian smooth kernel, which is a function of the original

moothness of fMRI images whose estimation approach is shown

n Appendix C . A proof of the Eq. (2) is shown in Appendix E . 

.2.2. Cluster-level inference 

Cluster-level inference is also popular in brain image analysis.

ere, inference is based on the observed cluster size exceeding cer-

ain cluster-defining threshold (CDT) ( Friston et al., 1994 ). We are

sually interested in whether the observed cluster size is large by

hance, i.e., where the size is on the upper tail of the distribution

f maximum cluster size under the null hypothesis. We show that,

imilar to the voxel clusters in three-dimensional space, the func-

ional connectivity cluster (FC cluster) can also be defined rigor-

usly. Its size can be used as a test statistic for statistical inference,

nd it has a clear interpretation. 

A voxel cluster is a set of spatially connected voxels. To de-

ne a FC cluster, we first illustrate the neighborhood relationship

etween two functional connectivities. Let the endpoints of two

unctional connectivity be ( x 1 , y 1 ) and ( x 2 , y 2 ), if their endpoints

re non-overlapped voxels, then two functional connectivities are

eighbors if both x 1 , x 2 and y 1 , y 2 are spatially adjacent voxels. If

hey share a same endpoint (e.g. x 1 = x 2 ), then they are neighbors

f y 1 , y 2 are spatially adjacent voxels. Some examples of FC neigh-

ors are shown in Fig. 3 (A). Now, consider an undirected graph

with k nodes, where the nodes are k functional connectivities

nd two nodes are connected if they are neighbors, then these

 functional connectivities form a FC cluster if they form a con-

ected component in the graph G. Some examples of FC clusters

re shown in Fig. 3 (B). There are five voxel clusters A, B, C, D,

 in a two-dimensional image. The FCs between AB, BC and AD

re different FC clusters, and FCs within voxel cluster E also form

 single FC cluster. An algorithm for finding FC clusters can be

mplemented based on the above definition. In our analysis, We

se Dulmage–Mendelsohn decomposition to find connected com-

onents in graph G. 

Based on the normality and stationarity assumption as in peak-

evel inference, we propose to use Gaussian random field theory

o approximate the null distribution of maximum cluster size. In

rief, let M be the number of FCs with z -values exceeding a pre-

pecified CDT z 0 , N be the number of FC clusters, and S be size of a

C cluster. Suppose that separate FC clusters are independent, then

he distribution of maximum cluster size S max for Gaussian random

eld is ( Adler, 1981; Friston et al., 1994 ): 

 (S max > s ) = 1 − exp [ −E (N) P (S > s ) ] 

he expected number of FC clusters E (N) at a high CDT z 0 can be

pproximated by the expected EC of Gaussian random field using

q. (2) : 

 (N) ≈ E (EC) = 

P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) ρZ 
i + j (z 0 ) 

he distribution of S can be approximated by ( Adler, 1981; Nosko,

969 ): 

 (S > s ) = exp 

[ 

−
(


((P + Q ) / 2 + 1) E (N) s 

E (M) 

) 2 
(P+ Q ) 

] 

here E (M) = m [1 − �(z 0 )] , and m is the number of functional

onnectivities, and �( •) is the cumulative distribution function of

tandard normal distribution. The above theory is a generaliza-

ion of previous result (e.g. Friston et al., 1994 and Hayasaka and

ichols, 2003 ), except the use of Eq. (2) to approximate the ex-

ected number of clusters E (N) . 

Therefore, in the cluster-level inference, small-sized FC clusters

re more likely to be identified as false positives and filtered out
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Fig. 3. Two-dimensional diagrams of FC neighbors and FC clusters. The size of FC clusters exceeding a cluster-defining threshold is used as a test statistic in the cluster-level 

inference. (A) In BWAS, there are two cases that FCs are neighbors. In situation 1, two FCs share a common endpoint and another two endpoints are spatial neighbors. In 

situation 2, two pairs of endpoints of two FCs are all spatial neighbors. Situation 3 is a special case of situation 2. (B) In BWAS, FCs can form a cluster in two ways. The 

first one is the FCs between voxel cluster AB, BC and AD, and the second one is FCs within a voxel cluster E. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.) 
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e.g. the red link in Fig. 3 (B)). Large-sized FC clusters represent an

xistence of association signals either between two different voxel

lusters (e.g. the blue and green ones in Fig. 3 (B)) or within a sin-

le voxel cluster (e.g. the yellow one in Fig. 3 (B)). For example,

onsider that one performed a case-control BWAS, then the iden-

ified FCs can be either altered connections between two brain re-

ions or within a single region. 

.3. Validating peak- and cluster-level inference in real data 

.3.1. Data 

We briefly illustrate the data used in this article, all details are

rovided in Appendix A . 

Two resting-state fMRI datasets are used in our analysis: (1) 197

ubjects from the Cambridge dataset in the 10 0 0 Functional Con-

ectomes Project (10 0 0 FCP); (2) 222 subjects from the Southwest

niversity (SWU) dataset in the International Data-sharing Initia-

ive (IDNI). The subjects in the two datasets are all healthy people

ith similar demographic information. They are preprocessed us-

ng standard preprocessing pipelines implemented in Data Process-

ng and Analysis for Brain Imaging (DPABI) ( Yan et al., 2016 ). Fi-

ally, All fMRI data are registered to 3 × 3 × 3 mm 

3 standard space,

nd 47,636 voxel time series within each subject’s 90 cerebrum re-

ions (based on AAL template, Rolls et al., 2015 ) are extracted. They

re then smoothed by 3D Gaussian kernels with FWHM = 0, 2, 4,

, 8, 10, 12 mm on each dimension. 

In addition, the above data are also mapped on to the Conte69

urface-based atlas using the Connectome Workbench software.

hey are smoothed by 2D Gaussian kernels restricted on the cor-

ical surface with FWHM = 0, 4, 8 mm. Finally, 32,492 vertex time

eries on the left cortical surface are used in our analysis. 

.3.2. Evaluating the proposed methods 

To evaluate whether the random field theory can actually con-

rol the FWER in real data analysis (including connexel-wise FWER

nd cluster-size FWER), we compared our method with empirical

ermutation results in real data. Similar approaches have previ-

usly been adopted to validate the random field theory in task-

ctivation studies ( Eklund et al., 2016; 2012 ). 

The following procedures were carried out in each of the

olume-based and surface-based fMRI datasets. First, subjects were

andomly divided into two groups. Second, BWAS was performed

o compare the whole-brain functional connectivities between

wo groups (approximately 1.13 × 10 9 connections in volume-based

ata, and 5.28 × 10 8 connections in surface-based data). The peak-
nd cluster-level inference approaches were applied to find signifi-

ant signals. Third, the above two steps were repeated 20 0 0 times.

WER was then estimated by computing that proportion of permu-

ations in which any significant signal was found. The signal was

unctional connectivities in the peak-level inference, and FC clus-

ers exceeding certain CDT in the cluster-level inference. Since sub-

ects were all healthy people with similar demographic informa-

ions, and their group labels were randomly assigned, we expected

hat there were no group differences. Therefore, if the proposed

pproach is valid, the proportion of analysis with at least one sig-

ificant effect should be close to the nominal error rate 0.05. 

.4. Comparing with other multiple correction methods 

We compared our proposed method with connexel-wise Bon-

erroni correction and false discovery rate (FDR-BH, Benjamini and

ochberg, 1995 ; FDR-BY, Benjamini and Yekutieli, 2001 ) in terms

f the observed power and false-discovery rate. To mimic real data,

e did not use completely simulated data, but rather, we adopted

 widely used evaluation methodology in GWAS (e.g. Yang et al.,

014; Zhou and Stephens, 2012 ), which directly add simulated sig-

als to real data. The data used here were 197 subjects in the Cam-

ridge dataset in four smoothness levels (FWHM = 0,4,8,12 mm). 

.4.1. Simulation procedures 

First, two cerebrum regions within the AAL template were ran-

omly selected. BOLD signals of voxels within these two regions

ere extracted. Second, subjects were randomly divided into two

roups. For each subject in one group, a common signal was added

o a small cluster of voxel time series of each region. Therefore,

he functional connectivities between voxels in these two clus-

ers were increased, which formed a single FC-cluster. Third, a

wo-sample t -test was used to compare two groups of functional

onnectivities. Five methods, including Bonferroni correction, FDR-

H ( Benjamini and Hochberg, 1995 ), FDR-BY ( Benjamini and Yeku-

ieli, 2001 ), peak-level inference, and cluster-level inference (with

ifferent CDT), were used to control the false-positive rate of mul-

iple hypothesis testings. The steps two and three were repeated

or 100 times. 

Four free parameters were found in our simulation: (1) voxels

elected from real data, (2) signal width, i.e., the number of altered

unctional connectivities, (3) effect size of the signal and (4) image

moothness. In Section 3 , we will report the results of comparisons

mong the different combinations of parameters. 
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2.4.2. Performance metrics 

Two metrics were used to evaluate the performance: the ob-

served power and false-discovery rate. The observed power was

calculated as the number of discovered true-positive functional

connectivities divided by the total number of true-positive con-

nectivities. The observed false-discovery rate was calculated as the

number of discovered false-positive functional connectivities di-

vided by total number of discovered functional connectivities. In

Section 3 , we will report the average power and false-discovery

rate of different methods. 

2.5. Statistical power analysis 

A method to estimate the statistical power of peak-level infer-

ence is proposed ( Fig. 2 ). Power is defined as the probability of

finding at least one true-positive signal for a region (denoted as B)

in which the false-positive rate α is controlled at a certain level in

the whole search region (denoted as A) ( Friston et al., 1994 ). To es-

timate power, four parameters should be specified: (1) the thresh-

old that controls connectivity-wise FWER α, (2) the effect size of

true signal γ , (3) the sample size n , and (4) the smoothness of im-

age. 

First, if we assume that the primary variable of interest, β1 
i j 
, is

subject to a normal distribution N(μi j , σ
2 
i j 
) , the null hypothesis is

H 0 : E (β1 
i j 
) = 0 . Therefore, every test statistic Z ij is subject to N (0,

1). The whole search region A is a central Gaussian random field

with mean zero and variance one at each point. The threshold z 0 
to control the FWER at α is obtained by the random field theory

( Eq. (2) ): 

α = P ( max 
(p,q ) ∈ A 

Z(p, q ) > z 0 | H 0 ) 

where ( p, q ) are the coordinates of the functional connectivities. 

Then, under the alternative hypothesis H 1 : E (β1 
i j 
) = μi j , the

test statistics Z ij is subject to N( 
√ 

n μi j /σi j , 1) , where n is the sam-

ple size. The γi j = μi j /σi j is called effect size at FC ij . We further

assume that the distribution of signals will be the same in region

B , i.e., all β1 
i j 

is subject to the same normal distribution N ( μ, σ 2 ).

Therefore, region B is a non-central Gaussian random field Z ∗( p, q )

with mean 

√ 

n γ and variance one at each point. The power in the

search region B ⊂ A can be expressed as: 

Power = P ( max 
(p,q ) ∈ B 

Z ∗(p, q ) > z 0 | H 1 ) 

The non-central Gaussian random field Z ∗( p, q ) can be trans-

formed to a central Gaussian random field by the following

element-wise transformation: 

Z(p, q ) = Z ∗(p, q ) − √ 

n γ

Therefore, the power in region B can still be calculated using

Eq. (2) : 

Power = P ( max 
(p,q ) ∈ B 

Z(p, q ) > z 0 −
√ 

n γ | H 0 ) 

Three issues remain. The first involves selecting region B . When

estimating power, we select region B as consisting of functional

connectivities between two three-dimensional balls, with the di-

ameter of each ball being equal to the intrinsic FWHM of the im-

age ( Fig. 2 ). The idea is that signals within such ball are usually

homogeneous as a result of smoothing the images. 

The second issue involves the random field theory which can

only approximate the right tail of the maximum distribution.

Therefore, the above method may lead to an inaccurate estimation

when z 0 −
√ 

n γ is small. To address this problem, we propose to

use the following heuristic modification: 

Power = 1 − exp 

[
−P ( max 

(p,q ) ∈ B 
Z(p, q ) > z 0 −

√ 

n γ | H 0 ) 

]

his formula ensures that the power is between zero and one,

hich shows excellent performance in the simulation. 

The last issue concerns estimating the effect size, which is typ-

cally estimated from the statistical map of a pilot study using

he same study design. Suppose that the pilot BWAS study used

 

� samples. Then, the estimated effect size at FC ij is ( Joyce and

ayasaka, 2012 ): 

ˆ i j = Z i j / 
√ 

n 

� 

sing the above formula, the power can be estimated for each

unctional connectivity to form a power map on six-dimensional

pace, but it is quite difficult to visualize such a maps. Therefore,

o report the power of a study, we estimate the effect size of every

C to form an empirical distribution. The power curves of different

ample sizes and effect sizes under certain power (e.g. 90% power)

re analyzed and reported. 

.5.1. Simulation-based validation for power analysis 

To test whether the proposed method can estimate power ac-

urately, we performed a simulation study. Briefly, we simulated a

ase-control study with known effect size in a subset of functional

onnectivities, and we compared the observed power and the the-

retical power. 

In detail, first, we generated two sets of 10,0 0 0 three-

imensional independent Gaussian white noise images, with 30

oxels per dimension. Second, the images were smoothed by Gaus-

ian kernels with FWHM ranging from 3 to 6 voxels. Third, a ball

as extracted for subsequent analysis with radius being equal to

he FWHM of images and located at the center of each image. This

uaranteed the uniform smoothness. Fourth, every 20 images were

ombined to form 500 simulated four-dimensional fMRI data. We

enoted the images in the first set as (A 1 , A 2 , . . . , A 500 ) and the im-

ges in the second set as (B 1 , B 2 , . . . , B 500 ) . Fifth, the Pearson corre-

ation coefficients were calculated between time series of pairwise

oxels of images A i and B i , and a Fisher’s Z transformation was

hen performed. Sixth, two groups of images from two sets were

andomly selected, with each group consisting of 200 samples. A

 -map was then generated by fitting each functional connectivity

o a general linear model to compare the two groups. Seventh, sig-

als were then added to functional connectivities between the two

alls. Specifically, a signal was the mean intensity difference be-

ween two groups. We then estimated power using simulated data

nder different parameters, including image smoothness FWHM,

ample size n and effect size γ ( Fig. 2 ). The steps six and seven

ere repeated for 10,0 0 0 times under each parameter setting, and

he maximum statistics were recorded at each simulation. The em-

irical power was estimated by the proportion of maximum statis-

ics exceeding the FWER-corrected 0.05 threshold. We compared

he results of simulation with the proposed theoretical method. 

. Results 

.1. Overview of the proposed approaches 

Figs. 1 and 2 show the diagrams of the proposed approaches.

ig. 4 shows the multiple comparison threshold of different ap-

roaches in a typical BWAS study. In the study, the fMRI data have

 spatial resolution of 3 × 3 × 3 mm 

3 . A total of 47,636 voxels in

he cerebrum regions were used. 

Methods that control connectivity-wise FWER, including Bonfer-

oni correction and peak-level inference, provide evidence of asso-

iation of each individual functional connectivities that survive the

hreshold. Bonferroni correction is always the most conservative

ne. The peak-level inference is more powerful when the smooth-

ess of images increased. As shown in Fig. 4 , the FWER-corrected
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Table 1 

The estimated smoothness of different datasets used in our analysis (FWHM in mm). 

Applied smoothness 0 mm 2 mm 4 mm 6 mm 8 mm 10 mm 12 mm 

Estimated smoothness Cambridge volume-fMRI 4.5 mm 4.6 mm 7 mm 10.6 mm 13.2 mm 15.9 mm 17.6 mm 

Cambridge surface-fMRI 4.7 mm 6.9 mm 11.1 mm 

SWU volume-fMRI 5.1 mm 5.2 mm 7.5 mm 10.9 mm 13.4 mm 15.3 mm 17.9 mm 

SWU surface-fMRI 5.2 mm 7.7 mm 12.2 mm 

Fig. 4. A comparison of the multiple comparison thresholds provided by differ- 

ent methods in BWAS using 3 × 3 × 3 mm 

3 volume-based fMRI data. Methods that 

control FWER (Bonferroni correction and peak-level inference) provide universal 

thresholds across FCs. The threshold of FDR approaches depend on the rank of p - 

values of FCs. The cluster-defining threshold of cluster-level inference is an univer- 

sal threshold across FCs, and a subsequent correction on the size of FC clusters is 

applied. (For interpretation of the references to color in this figure, the reader is 

referred to the web version of this article.) 
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hreshold can be 1 to 2 order of magnitudes less conservative than

onferroni correction. 

Methods that control connectivity-wise FDR, including FDR-BH

nd FDR-BY approaches, control the proportion of false-positive

ndings smaller than a pre-specified level q (e.g. 5%). For the

idely-used FDR-BH approach, it compares the i -th smallest p -

alue p ( i ) with 

i 
n q, where n is the total number of hypothesis tests,

nd declares the first k smallest p -values as significant that if p ( k ) is

he largest p -value satisfies: p (k ) < 

k 
n q ( Fig. 4 ). Therefore, the power

f FDR approaches highly depends on the observed p -values, which

an be more or less powerful than the peak- and cluster-level infer-

nce. For example, controlling the FDR at q = 0 . 05 is very stringent,

wing to the billions of statistical tests performed in BWAS. How-

ver, it can be more powerful when many of the p -values meet the

equirement of the data-driven threshold. A method that controls

onnectivity-wise FWER can also control connectivity-wise FDR. 

The cluster-level inference approach tests the size of the FC

lusters exceeding a CDT. A significant FC cluster can provide ev-

dence that there exist association signals somewhere in this FC

luster. None of the individual functional connectivities in the clus-

er can be declared as significant ones. This approach is usually

ensitive to spatially extended signals. Moreover, when the CDT

quals the FDR threshold, the connectivity-wise FDR can be con-

rolled, and when the CDT equals the FWER threshold, it is equiv-

lent to control the connectivity-wise FWER. 

.2. Validating peak- and cluster-level inference in real data 

.2.1. Estimated connexel-wise and cluster-size FWER in real datasets 

We evaluate whether the proposed method can control the

WER in real data analysis, including the connexel-wise FWER for

he peak-level inference and cluster-size FWER for the cluster-level

nference. We compared the theoretical FWER with the empiri-
al FWER estimated by permutation approaches using real data.

he experimental procedures are illustrated in Section 2.3.2 . For

olume-based fMRI data, we used 2 datasets under 7 smoothness

evels. For surface-based fMRI data, we used 2 datasets under 3

moothness levels. The estimated smoothness of different datasets

re shown in Table 1 . 

Fig. 5 shows the estimated FWER of peak- and cluster-level in-

erence methods using volume-based fMRI data . We found that the

eak-level approach is valid, as most of the estimated FWERs lie

n the binomial confidence interval of 20 0 0 permutations (dashed

ine). The cluster-level inference is also valid if the CDT is larger

han 5. However, when the CDT becomes smaller, the false-positive

ate will exceed the nominal level, because the assumptions of the

heory may break down. 

Fig. 6 shows, for cluster-level inference, the comparison of the

stimated cluster-size threshold of random field theory and per-

utation approach at low smoothness levels . Different from the

bove analysis, we directly compare two thresholds because the

5% quantiles of empirical maximum cluster-size distribution can-

ot be estimated accurately in permutation tests. The reason is

hat when the smoothness is low, the size of FC clusters is usually

mall, thus, there are many ties in the maximum cluster-size dis-

ribution. A good agreement between the two thresholds demon-

trates the validity of cluster-size inference at low smoothness

evel, and the CDT can even be lower comparing with the above

nalysis ( Z = 4.5). 

Fig. 7 shows the estimated FWER of peak- and cluster-level

nference methods using surface-based fMRI data . We found that,

hen no spatial smoothing is applied (FWHM = 0 mm), our

pproach is more conservative than permutation approach. The

ethod works well when we smooth the data. However, to

he best our knowledge, there are no standard preprocessing

ipelines for surface-based resting-state fMRI data, thus, our

urface-mapping approach may not be optimal for BWAS and dif-

erent preprocessing pipelines may affect the performance of our

pproach. Therefore, the robustness of the approach should be

ested in the future. 

.2.2. Distribution of functional connectivity data 

We tested whether functional connectivities data, i.e., Fisher’s

 transformed correlation coefficients, were subject to normal dis-

ributions, which was a critical assumption for Gaussian random

eld theory. We performed one-sample Kolmogorov–Smirnov test

o test the normality of each functional connectivity in both Cam-

ridge and Southwest University datasets. Supplement Figs. F.13

nd F.15 show the results. As most of the p -values are larger than

.05, we conclude that the normality assumption is met. 

.2.3. The choice of cluster-defining threshold 

For cluster-level inference, the expected Euler Characteristics is

sed to approximate the expected number of clusters in the ran-

om field theory, assuming that the absence of holes when CDT is

pplied. However, this assumption may not be true when the CDT

s not high enough or the data are not smooth enough. Therefore,

e compared the expected Euler characteristics calculated based

n the Gaussian random field theory with the observed expected

umber of clusters across different levels of CDT in volume-based

MRI data in both Cambridge and Southwest University datasets.
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Fig. 5. Validating peak- and cluster-level inference by comparing the theoretical FWER with permutation-based empirical FWER at 0.05. The methods are tested in 2 datasets 

(top: Cambridge; bottom: SWU) under 7 different smoothness levels (0–12 mm smoothing). The estimated FWER is that proportion of permutations in which any significant 

signals (functional connectivities or FC clusters) are found by the random field theory. Left: results for peak-level inference. Right: results for cluster-level inference with 

different clustering-defining thresholds (from 4.9 to 5.9). Almost all the results lie in the binomial 95% confidence interval (the dashed line). (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 
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The observed expected number of clusters was computed based on

an average of 20 0 0 permutations of each dataset. The results are

shown in Supplement Figs. F.14 and F.16. We find that, when the

applied smoothness is larger than 4 mm, the choice of CDT greater

than 5 is very safe for 3 × 3 × 3 mm 

3 resolution fMRI data to meet

the assumption of the random field theory. This is in agreement

with our results in the previous section ( Fig. 5 ). When the smooth-

ness is low, we found that there exist a deviation between theory

and real data when the CDT is smaller than 5.5. However, the re-

sults shown in Fig. 6 indicate the proposed method can provide a

valid threshold when the CDT is as low as 4.5 in two datasets. 

3.3. Comparing peak- and cluster-level inference with other multiple 

correction methods 

Fig. 8 shows the results of comparisons using 197 subjects

in the Cambridge dataset. The experimental procedures are illus-

trated in Section 2.4 . In this analysis, we extracted time series

of 306 voxels from the left putamen region and 302 voxels from

the left inferior frontal gyrus in each of the 197 subjects, and

306 × 302 = 92 , 412 functional connectivities between these two

regions were calculated. Signals were added to a subset of voxel

time series, with effect size ranging from 0.5 to 1.5, and smooth-

ness of 0,4,8,12 mm was applied. For cluster-level inference, we

used CDT = 3, 3.5 and 4 ( Z -value). The following observations are

obtained from this simulation: 
• Almost all the methods can control false discovery rate in this

simulation (below 5%). 
• The power of peak-level inference is similar to Bonferroni

correction when the smoothness is low (e.g. no spatial smooth-

ing), but it becomes close to FDR-BY and much higher than that
f Bonferroni correction when the smoothness is high (e.g. applied

moothness of 12 mm). 
• The false discovery rate and power of cluster-level inference

epends on the choice of CDT. The lower the CDT, the higher the

alse discovery rate and power. 
• We can find a CDT whose power is higher than that of the

DR method. In the meantime, the false discovery rate is lower.

or example, for cluster-level inference with CDT = 3, the power is

igher than that of the FDR-BH method, and the false discovery

ate is lower. For cluster-level inference with CDT = 3.5, the power

s higher than that of the FDR-BY method, and the false discovery

ate is lower. 

Similar results can be obtained by changing the selected vox-

ls and the width of the signal added, as shown in thea Supple-

ent Figs. F.17 and F.18. In conclusion, cluster-level inference can

ncrease sensitivity and decrease false-positive rate by filtering out

mall FC-clusters generated by random noises. Peak-level inference

hows increased power when the smoothness is large; thus, it is

ecommended when performing group-level studies with large ap-

lied smoothness. 

.4. Real data analysis: identifying altered functional connectivities in

ajor depression disorder 

We applied our method to identify functional connectivity dif-

erence between patients with major depression disorder (MDD)

nd healthy controls. The data used here are part of the data in our

revious study ( Cheng et al., 2016 ) which contained 282 patients

nd 254 demographic information matched controls from South-

est University dataset. We applied BWAS approach to test the

onnectivity difference between two groups, with age, gender, ed-
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Fig. 6. Validating cluster-level inference at low smoothness by comparing the theoretical cluster-size threshold with permutation-based empirical threshold at FWER 0.05 

with different clustering-defining thresholds (from 4.5 to 5.9). The methods are tested in 2 datasets (top: Cambridge; bottom: SWU) under 2 different smoothness levels 

(0 mm and 2 mm smoothing). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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cation year, head motion (mean frame-wise displacement) being

uisance covariates. The most significant p-value among all func-

ional connectivities was p = 5 . 5 × 10 −11 in this analysis. However,

he Bonferroni correction, FDR-BH and FDR-BY approaches cannot

etect any significant connectivities (FWER or FDR at 0.05). This

s because Bonferroni correction requires the p -value smaller than

p = 4 . 4 × 10 −11 , and both FDR-BH and FDR-BY approaches require

he p -values smaller than the data-driven threshold. See the Man-

attan plot for details ( Fig. 9 ). 

The p -value threshold of peak-level inference approach was

p = 9 . 1 × 10 −10 (connectivity-wise FWER = 0.05). A total of 114 al-

ered functional connectivities were found ( Fig. 10 , left). We also

pplied cluster-level inference approach to identify significant FC

lusters (CDT p = 3 × 10 −7 ( Z = 5) and cluster-size FWER = 0.05). A

otal of 12,388 functional connectivities were found with p -values

maller than the applied CDT, and they formed 117 FC clusters.

he largest one contains 2247 functional connectivities. Finally, 10

argest FC clusters survived the cluster-size FWER 0.05 threshold

 Fig. 10 , right). 

Almost all the significant FCs in peak-level inference form FC

lusters in the cluster-level inference. We could see that, although

illions of hypothesis tests were performed and tens of thousands

f functional connectivities were found, the results obtained by

he cluster-level inference are very structured, thus, easy to be re-

orted ( Fig. 10 , right). The identified FC clusters can be used in

ubsequent analysis in several ways. For example, we can calcu-

ate the mean functional connectivity within each FC clusters, and

se prediction models to classify patients and controls in a new

ataset. For patients, we can also test whether the mean functional
 r
onnectivity of each FC cluster is associated with the depression

ymptom severity scores. 

.5. Simulation-based validation for power analysis 

Fig. 11 shows the relationship between sample size and power

stimated by two methods under two combination of parameters:

ffect size γ = 0 . 2 , 0 . 4 , 0 . 6 and smoothness FWHM = 3,4,5,6 voxels.

he estimation error (mean squared error) shown on the top of

ach figure is very low. Therefore, the proposed method can esti-

ate power accurately, and this proposed framework can save a

onsiderable amount of time to generate power curves. 

.6. The power of a future brain-wide association study on MDD 

We show an example of how to perform a power analysis to

stimate the minimum required sample size for a BWAS. In this

xample, we will analyze the power of BWAS on MDD using the

esults of the above study. The aim is to estimate the minimum

equired sample size to find at least one altered functional con-

ectivities. Base on the above study, the most significant func-

ional connectivities is p = 5 . 5 × 10 −11 , corresponding to an effect

ize of γ = 0 . 28 . Assuming that in the new dataset, this functional

onnectivity has a similar effect size, the power under different

ample sizes and smoothness levels are estimated and plotted in

ig. 12 . Results show that about 80 to 130 subjects are needed to

each 90% power under different smoothness levels. 
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Fig. 7. Validating peak- and cluster-level inference in surface-based fMRI data by comparing the theoretical FWER with permutation-based empirical FWER at 0.05. The 

methods are tested in 2 datasets (top: Cambridge; bottom: SWU) under 3 different smoothness levels (0, 4, 8 mm smoothing). The estimated FWER is that proportion of 

permutations in which any significant signals (functional connectivities or FC clusters) are found by the random field theory. Left: results for peak-level inference. Right: 

results for cluster-level inference with different clustering-defining thresholds (from 4.9 to 5.9). Almost all the results lie in the binomial 95% confidence interval (the dashed 

line). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Fig. 8. Comparing peak- and cluster-level inference methods with Bonferroni correction and two FDR methods in terms of power (first column) and false discovery rate (sec- 

ond column) across different levels of effect size and smoothness levels using the Cambridge dataset. Left: power curves of different approaches under different smoothness 

levels. Right: FDR curves of different approaches under different smoothness levels. (For interpretation of the references to color in this figure, the reader is referred to the 

web version of this article.) 
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Fig. 9. Manhattan plot of altered functional connectivities in major depression disorder ( p < 10 −5 only). Each point represents a functional connectivity grouped by the 94 

cerebrum regions of the AAL2 template. Bonferroni correction, FDR-BH and FDR-BY fail to identify any significant connections, while both peak- and cluster-level inference 

approaches identified many altered connectivities. Their brain locations are shown in the next figure. (For interpretation of the references to color in this figure, the reader 

is referred to the web version of this article.) 

Fig. 10. The altered functional connectivities in major depression disorder identified by peak-level inference (left) and cluster-level inference (right). For peak-level inference, 

the connectivity-wise FWER is 0.05, which corresponds to uncorrected p -value = 9 × 10 −10 . For cluster-level inference, the CDT is Z = 5 ( p = 3 × 10 7 ) and cluster-size FWER 

threshold is 0.05. Abbreviations of regions are listed in Supplement Table G.2. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.) 
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. Discussion 

Our proposed method can accurately control both connectivity-

ise FWER and connectivity-extent FWER, as demonstrated by

omparing with the empirical FWER obtained from two real

atasets. To the best our knowledge, BWAS is the first method

o use the random field theory to analyze the voxel-wise func-

ional connectome. Random field theory makes some assumptions

f data. Eklund et al. (2016) recently reported that random field

heory could lead to inflated false-positive rate in task-activation

nalysis, particularly when the CDT is low ( p = 0 . 01 ). This failure

s well known since the choice of low CDT violates the assump-

ions of the original theory ( Friston et al., 1994 ). However, when

he CDT is selected appropriately (e.g. p = 0 . 001 ), FWER is closer to

ominal level ( Eklund et al., 2016; Flandin and Friston, 2016; Greve

nd Fischl, 2017 ). Another article ( Flandin and Friston, 2016 ) has

lso pointed out that the random field theory can provide accept-
ble FWER control when using two-sample t -test instead of one-

ample t -test and resampling the data closer to the original image

esolution. In our analysis, we have demonstrated that the random

eld theory is valid for both volume- and surface-based resting-

tate fMRI data under different smoothness. Particularly, the CDT

n cluster-level inference should be high enough (| Z | > 5 for mod-

rate or large smoothness and | Z | > 4.5 for low smoothness). 

Importantly, our method is computationally efficient. It is a

ully parametric approach which is not based on any simula-

ion or permutation. Although non-parametric approaches can

lso perform multiple correction and power analysis ( Nichols and

olmes, 2002 ), they are extremely slow in connexel-wise analy-

is by the necessity of calculating billions of statistical tests many

imes. Our empirical studies show that our approach is usually

t least N times faster than the non-parametric permutation ap-

roaches, where N is the number of permutations performed. The

eason is that, although the subject-level brain network can be
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Fig. 11. Comparing the theoretical power analysis method (red line) with the simulation result (blue line). Each figure shows the relationship between estimated power and 

sample size. From the left to the right, the effect sizes are 0.2, 0.4 and 0.6. From the top to the bottom, the FWHMs are 3 to 6 voxels. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Power of detecting at least one altered functional connectivity in major de- 

pression disorder under different sam ple sizes and smoothness levels estimated by 

the proposed approach. (For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article.) 
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s  
computed only once in non-parametric permutations, the fitting of

connexel-wise GLM is usually much slower than network construc-

tion, thus, it dominates the computation time. In addition, paral-

lelization of permutations will not save much time, because the

transmission speed of large data between processors is very slow. 

Many possible extensions and improvements of the current

framework can be developed in the future. First, the functional

connectivities identified by massive univariate statistical tests ap-

proach may not be predictive, e.g., in a case-control study, the

identified connectivities may not be able to classify patients and

controls. A directly construction of connexel-wise prediction model

is also not practical, since the model constructed on a few hun-

dred subjects and billion of features usually has a large variance.

Meanwhile, the optimization of model parameters become very

difficult in this ultra-high dimensional feature space. One possible

way to solve this problem is to adopt the current BWAS frame-
ork into sure independence screening (SIS) approach ( Fan and

v, 2008; Fan et al., 2009; 2010 ). Second, this framework can be

xtended to task fMRI analysis to identify network configuration

hanges (e.g. Lohmann et al., 2016 ). It can support either sin-

le subject analysis or group analysis provided that the task ex-

eriment is in block design and the length of each trial is long

nough to enable network construction. Third, the cluster-level in-

erence proposed here controls the FWER of cluster size. An alter-

ative method of controlling the FDR of cluster size was proposed

n task-activation studies ( Chumbley and Friston, 2009; Chumbley

t al., 2010 ), which can be easily adopted here. Forth, the estima-

ion of subject-level functional network is based on the Pearson

orrelation between pairwise BOLD signal time series in the cur-

ent framework, which may be suboptimal ( Westfall and Yarkoni,

016; Bellec et al., 2008; Sahib et al., 2016 ). Therefore, a better

pproach for constructing a functional network at the voxel level

hould be designed and validated in the future ( Narayan and Allen,

016; Bickel and Levina, 2008 ). Fifth, with the higher volume of

vailable data, statistical methods for combining BWAS results from

ultiple imaging centers are needed. In BWAS, integrating results

rom different datasets has been shown to greatly reduce the false-

ositive rate and increase sensitivity ( Cheng et al., 2015a; 2015b;

016 ). However, the sample heterogeneity introduced by differ-

nt sources, such as different data acquisition pipelines, population

tratification, and genetic background, may make the traditional

eta-analysis methods used in our previous studies suboptimal. 

In this paper, we develop a rigorous statistical framework for

WAS. Both peak- and cluster-level inferences are introduced for

he analysis of voxel-wise functional connectomes, and the ran-

om field theory is developed to control FWER and estimate sta-

istical power. We believe that this method will be very useful for

he neuroimaging fields in the context of understanding the brain

onnectome. 
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ppendix A. Image acquisition and preprocessing 

Only publicly available data are used in this article. Resting-

tate fMRI data are collected from two imaging sites: (1) 197

amples from the Cambridge dataset in 10 0 0 Functional Con-

ectomes Project (10 0 0 FCP) ( Biswal et al., 2010 ) ( http://fcon _

0 0 0.projects.nitrc.org/fcpClassic/FcpTable.html ); (2) 222 subjects

rom the Southwest University dataset in International Data-

haring Initiative (IDNI) ( http://fcon _ 10 0 0.projects.nitrc.org/indi/

etro/southwestuni _ qiu _ index.html ). All subjects are normal peo-

le. As Southwest University dataset is a longitudinal dataset, only

ubjects who scanned at the first time are used in this paper. 

All the data collected are subject to their local ethics review

oards, the experiments and the dissemination of the anonymized

ata are approved. The detailed data acquisition methods may

e found in the respective websites and papers. The data were

reprocessed using SPM12 ( Penny et al., 2011 ) and Data Process-

ng and Analysis for Brain Imaging (DPABI) ( Yan et al., 2016 ).

or each individual, the preprocessing steps included discarding

he first 10 time points, slice timing correction, motion correc-

ion, coregistering the functional image to individual T1 struc-

ure image, segmenting structure images and DARTEL registration

 Ashburner, 2007 ), regressing out nuisance covariates including 24

ead motion parameters ( Friston et al., 1996 ), white matter sig-

als, cerebrospinal fluid signals, temporal filtering (0.01–0.1 Hz),

ormalizing to standard space of voxel size 3 × 3 × 3 mm 

3 by DAR-

EL, and smoothing by a 3D Gaussian kernel with FWHM = 0, 2,

, 6, 8, 10, 12 mm. Finally, all the images are manually checked by

xperts to ensure preprocessing quality. Images that are not suc-

essfully preprocessed are discarded in our analysis. 

The surface-based fMRI data are preprocessed using Con-

ectome workbench. For each volume-based fMRI data in

he Cambridge and Southwest University dataset, we map it

o the Conte69 surface-based atlas ( http://brainvis.wustl.edu/

iki/index.php//Caret:Atlases/Conte69 _ Atlas ) using the command

wb_command -volume-to-surface-mapping’. Each fMRI images are

hen smoothed by a 2D Gaussian kernel with FWHM = 0, 4,

 mm using the command ‘wb_command cifti-smoothing’. Finally,

he smoothness of each image is estimated by the command

wb_command -cifti-estimate-fwhm’. The surface area of Conte69
s estimated using the command ‘wb_command -surface-vertex-

reas’, which is used in the random field theory. 

ppendix B. Calculating the intrinsic volume and Gaussian 

C-density 

To perform peak-level and cluster-level inference, we should

alculate the 0- to 3-dimensional intrinsic volume and the 0- to

-dimensional EC-densities for the Gaussian random field. 

Let P be the number of voxels, E x (or E y , E z ) be number of x

or y, z )-direction edges (two adjacent voxels), F xy (or F yz , F xz ) be

umber of xy (or yz, xz )-direction surface (four adjacent voxels),

nd C be the number of cubes (eight adjacent voxels). The r x (or

 y , r z ) be the resel size of x (or y, z )-direction, which is defined

s the voxel size divided by FWHM (in mm). The 0–3 dimensional

ntrinsic volume of S can be calculated as: 

 0 (S) = P − (E x + E y + E z ) + (F yz + F xz + F xy ) − C 

 1 (S) = (E x − F xy − F xz + C) r x + (E y − F xy − F yz + C) r y 

+ (E z − F xz − F yz + C) r z 

 2 (S) = (F xy − C) r x r y + (F xz − C) r x r z + (F yz − C) r y r z 

 3 (S) = Cr x r y r z 

he above calculation has been implement in SPM package as

pm _ resels _ v ol function. Two other methods also work well in

ractice. One is to replace the original space with an equal vol-

me ball, as implement in the fmristat package, the other is to use

 linear regression model ( Adler et al., 2017 ), which do not need

he knowledge of spatial smoothness. In whole-brain BWAS, for

eak-level inference, the u i (P) and u i (Q ) are the same. As there

re p(p − 1) / 2 functional connectivities across p voxels, we divided

he estimated intrinsic volume by 
√ 

2 , thus, the highest order term,

 3 (P) × u 3 (Q ) , will approximate the total number of functional

onnectivities (in resel) in the brain. 

The 0- to 6-dimensional EC-densities for Gaussian random field

t t are: 

ρ0 (t) = 1 − �(t) 

ρ1 (t) = (4 ln 2) 
1 
2 (2 π) −1 e 

−t 2 

2 

ρ2 (t) = (4 ln 2)(2 π) −
3 
2 te 

−t 2 

2 

ρ3 (t) = (4 ln 2) 
3 
2 (2 π) −2 (t 2 − 1) e 

−t 2 

2 

ρ4 (t) = (4 ln 2) 2 (2 π) −
5 
2 (t 3 − 3 t) e 

−t 2 

2 

ρ5 (t) = (4 ln 2) 
5 
2 (2 π) −3 (t 4 − 6 t 2 + 3) e 

−t 2 

2 

ρ6 (t) = (4 ln 2) 3 (2 π) −
7 
2 (t 5 − 10 t 3 + 15 t) e 

−t 2 

2 

here �( •) is the cumulative distribution function of standard nor-

al distribution. 

ppendix C. Estimating the smoothness of the fMRI images 

The true smoothness of fMRI images is usually larger than the

pplied smoothness. Therefore, an accurate estimation of smooth-

ess is critical for Gaussian random field theory. The following ap-

roach is used to estimate the smoothness of 3D or 2D images

 Hagler et al., 2006 ): 

WHM = dv 

√ 

−2 ln 2 

ln (1 − var (ds ) 
2 var (s ) 

) 

here dv is the average inter-neighbor distance of voxels or ver-

ices, var( ds ) is the variance of inter-neighbors differences, and

ar( s ) is the overall variance of the values at each voxels or ver-

ices. The FWHM of fMRI image is the average smoothness of the

D or 2D images across all time points. 

https://doi.org/10.13039/501100001809
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html
http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
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Appendix D. Proof of Eq. (1) in the main text 

Using the property of d -dimensional intrinsic volume

( Taylor and Worsley, 2008 ) 

u d (P × Q ) = 

d ∑ 

k =0 

u k (P) u d−k (Q ) 

When d > P , u d (P) = 0 and d > Q , u d (Q ) = 0 . It is easy to conclude

that 

P+ Q ∑ 

d=0 

μd (P × Q ) = 

P+ Q ∑ 

d=0 

d ∑ 

k =0 

u k (P) u d−k (Q ) 

= 

P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) 

Appendix E. Proof of Eq. (2) in the main text 

We begin by considering the normal transformation of t -

statistic of BWAS map, which makes the ˆ σ 2 
i j 

fixed as ˆ σ 2 
0 ( Worsley

et al., 1992; 1996 ). Therefore, the test statistic becomes 

Z i j = 

c ̂  B i j √ 

c (X 

′ X ) −1 c ′ ˆ σ 2 
0 

= 

c (X 

′ X ) −1 X 

′ Y i j √ 

c (X 

′ X ) −1 c ′ ˆ σ 2 
0 

= 

n ∑ 

s =1 

w 

(s ) z (s ) 
i j 

where w 

( s ) is the s -th element of row vector c (X ′ X ) −1 X ′ √ 

c (X ′ X ) −1 c ′ ˆ σ 2 
0 

, which

only depends on the subjects, and z s 
i j 

is Fisher’s Z transformed cor-

relation coefficient. 

Let M 

(s ) (p) = (M 

(s ) 
1 

(p) , . . . , M 

(s ) 

v (s ) 
(p)) ′ , p ∈ P ⊂ R 

P and N 

(s ) (q ) =
(N 

(s ) 
1 

(q ) , . . . , N 

(s ) 

v (s ) 
(q )) , q ∈ Q ⊂ R 

Q be two vectors of v ( s ) inde-

pendent and stationary Gaussian random fields with mean ze-

ros and variance one. The index s denotes subjects, and the v ( s ) 

can be treated as the number of time points, while p, q are

the coordinates of three-dimensional Euclidean space. The ( P + Q )-

dimensional cross-correlation random field R ( s ) ( p, q ) is defined as

follows ( Cao et al., 1999 ): 

R 

(s ) (p, q ) = 

M 

(s ) (p) ′ N 

(s ) (q ) √ 

M 

(s ) (p) ′ M 

(s ) (p) N 

(s ) (q ) ′ N 

(s ) (q ) 

In BWAS, the cross-correlation field is generated by calculating

Pearson correlation coefficients between pairwise voxel time se-

ries. Next, the element-wise Fisher’s Z transformation transforms

this cross-correlation random field to a six-dimensional ‘Gaussian-

ized’ random field as: 

Z (s ) (p, q ) = 

1 

2 

log 

[
1 + R 

(s ) (p, q ) 

1 − R 

(s ) (p, q ) 

]

It has mean zero and variance 1 
v (s ) −3 

( Kenney, 2013 ). Our test

statistic Z ij ( p, q ) forms a weighted sum of Fisher’s Z transformed

cross-correlation random field Z ( p, q ) as: 

Z(p, q ) = 

n ∑ 

s =1 

w 

(s ) Z (s ) (p, q ) 

The random field Z ( p, q ) is a ‘Gaussianized’ random field with

mean zero and variance one. Therefore, we can use Eq. (1) in the
ain text to approximate its maximum distribution at high thresh-

ld: 

P ( max Z(p, q ) > z 0 ) ≈ E (EC) = 

(P+ Q ) ∑ 

d=0 

μd (P × Q ) ρZ 
d (z 0 ) 

= 

P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) ρZ 
i + j (z 0 ) 

(E.1)

The EC-densities for the Gaussian random field ρZ 
d 
(z 0 ) in any

imensions can be expressed as ( Adler and Taylor, 2009 ): 

Z 
d (z 0 ) = (2 π) −

d+1 
2 | 
| d 

2(P+ Q ) e −
z 2 
0 
2 

� d−1 
2 � ∑ 

j=0 

(−1) j 
(2 j)! 

j!2 

j 

(
d − 1 

2 j 

)
z d−1 −2 j 

0 

here D is the highest dimension of Z ( p, q ). The | 
| =
 Var ( ̇ Z (p, q )) | is the determinant of the variance-covariance ma-

rix of the partial derivative of Z ( p, q ). The | 
| can be replaced by

WHM Z , the Full Width at Half Maximum (FWHM) of the random

eld Z averaged across all dimensions, using the equation: 

WHM Z = (4 log 2) 
1 
2 | 
| − 1 

2 D 

nd FWHM Z is a corrected smoothness parameter, which can be

alculated as: 

WHM Z = 

( 

n ∑ 

s =1 

(w 

(s ) ) 2 

v (s ) − 3 

FWHM 

−2 
M 

(s ) 

) − P 
2(P+ Q ) 

×
( 

n ∑ 

s =1 

(w 

(s ) ) 2 

v (s ) − 3 

FWHM 

−2 
N (s ) 

) − Q 
2(P+ Q ) 

here FWHM M 

(s ) and FWHM N (s ) are the average FWHM of the ran-

om field vectors M 

( s ) ( p ) and N 

( s ) ( q ) across three dimensions. The

roof of this equation is given in the next section. Finally, Eq. (2) in

he main text is used in the peak-level inference: 

 ( max Z(p, q ) > z 0 ) ≈
P ∑ 

i =0 

Q ∑ 

j=0 

μi (P) μ j (Q ) 
(2 π) −

i + j+1 
2 (4 log 2) 

i + j 
2 

FWHM 

i + j 
Z 

× e −
z 2 
0 
2 

� i + j−1 
2 � ∑ 

k =0 

(−1) k 
(2 k )! 

k !2 

k 

(
i + j − 1 

2 k 

)
z d−1 −2 k

0 

(E.2)

We can see that FWHM Z is a function of the number of

ime points v ( s ) , the FWHM M 

(s ) and FWHM N (s ) of the individual

MRI data. Assuming that the length of scanning time and im-

ge smoothness is the same for every subject in a study. Denoting

hem as v and FWHM, the formula for calculating FWHM Z reduces

o: 

FWHM Z = 

( 

n ∑ 

s =1 

(w 

(s ) ) 2 

v − 3 

FWHM 

−2 

) − P 
2(P+ Q ) 

×
( 

n ∑ 

s =1 

(w 

(s ) ) 2 

v − 3 

FWHM 

−2 

) − Q 
2(P+ Q ) 

= FWHM 

√ 

v −3 

[ ( 

c (X 

′ X ) −1 X 

′ √ 

c (X 

′ X ) c ′ ˆ σ 2 
0 

) ( 

c (X 

′ X ) −1 X 

′ √ 

c (X 

′ X ) c ′ ˆ σ 2 
0 

) ′ ] − 1
2

= FWHM 

√ 

(v − 3) σ 2 
0 

= FWHM 
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here we treat the sample variance σ 2 
0 

as the theoretical variance
1 

v −3 . This suggests that the smoothness of random field Z ( p, q )

quals the original image smoothness. A series of non-linear

ransformations will maintain the original smoothness of images.

he scanning time does not influence this equation. 

In practice, for volume-base BWAS, we found that Eq. (1) usu-

lly provide a slightly conservative estimation of FWER-corrected

hreshold. Therefore, for volume-based BWAS, we modify it as: 

= P ( max Z(p, q ) > z 0 ) ≈ E (EC) ≈ μ2 (P) μ2 (Q ) ρZ 
6 (z 0 ) (E.3)

or surface-based BWAS, we use: 

= P ( max Z(p, q ) > z 0 ) ≈ E (EC) = 

2 ∑ 

i =0 

2 ∑ 

j=0 

μi (P) μ j (Q ) ρZ 
i + j (z 0 ) 

(E.4) 

f we only analyse the functional connectivities between subcorti-

al voxels P and cortical vertices Q , we use: 

= P ( max Z(p, q ) > z 0 ) ≈ E (EC) = 

3 ∑ 

i =0 

2 ∑ 

j=0 

μi (P) μ j (Q ) ρZ 
i + j (z 0 ) 

(E.5) 

Proof of the equation for calculating FWHM Z 

Let V ar( ˙ M 

(s ) (p)) = 
M s 
and V ar( ̇ N 

(s ) (q )) = 
N s , then according

o Lemma 4.2 in Cao et al. (1999) , 

∂ R 

(s ) (p, q ) 

∂ p 

D = (1 − R 

(s ) (p, q ) 2 ) 
1 
2 a 

− 1 
2 

s (
M s 
) 

1 
2 z (s ) 

M 

nd 

∂ R 

(s ) (p, q ) 

∂q 

D = (1 − R 

(s ) (p, q ) 2 ) 
1 
2 a 

− 1 
2 

s (
N s ) 
1 
2 z (s ) 

N 

here a s ∼ χ2 
v (s ) , z 

(s ) 
M 

∼ N(0 , I P,P ) , z 
(s ) 
N 

∼ N(0 , I Q,Q ) and independent

f R ( s ) ( p, q ), and 

D = means equal in distribution. Then, after Fisher’s

 transformation, we have 

∂ Z (s ) (p, q ) 

∂ p 

D = (1 − R 

(s ) (p, q ) 2 ) −
1 
2 a 

− 1 
2 

s (
M s 
) 

1 
2 z (s ) 

M 

nd 

∂ Z (s ) (p, q ) 

∂q 

D = (1 − R 

(s ) (p, q ) 2 ) −
1 
2 a 

− 1 
2 

s (
N s ) 
1 
2 z (s ) 

N 

hen, 

∂ Z(p, q ) 

∂ p 

D = 

n ∑ 

s =1 

w 

(s ) (1 − R 

(s ) (p, q ) 2 ) −
1 
2 a 

− 1 
2 

s (
M s 
) 

1 
2 z i M 

nd 

∂ Z(p, q ) 

∂q 

D = 

n ∑ 

s =1 

w 

(s ) (1 − R 

(s ) (p, q ) 2 ) −
1 
2 a 

− 1 
2 

s (
N s ) 
1 
2 z i N 

ince 

 ar( ̇ Z (p, q )) = 

⎛ 

⎜ ⎝ 
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he expectations in the above equations are 

E [ a −1 
s ] = 

1 

v (s ) − 2 

E [(1 − R 

(s ) (p, q ) 2 ) −1 ] = 

v (s ) − 2 

v (s ) − 3 

inally we get 
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ubstituting the variance covariance matrix of partial derivative of

he random field by the FWHM using its relationship with | 
|, we

ould get: 
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2 
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hus 
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(s ) 
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×
( 

n ∑ 
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(w 

(s ) ) 2 

v (s ) − 3 

FWHM 

−2 
N (s ) 

) − Q 
2(P+ Q ) 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.media.2018.03.014 . 
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