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Abstract
Disease association studies have characterized altered resting-state functional connectivities

describing schizophrenia, but failed to model symptom expression well. We developed a model

that could account for symptom severity and meanwhile relate this to disease-related functional

pathology. We correlated BOLD signal across brain regions and tested separately for associations

with disease (disease edges) and with symptom severity (symptom edges) in a prediction-based

scheme. We then integrated them in an “edge bi-color” graph, and adopted mediation analysis to

test for causality between the disease and symptom networks and symptom scores. For first-

episode schizophrenics (FES, 161 drug-naïve patients and 150 controls), the disease network (with

inferior frontal gyrus being the hub) and the symptom-network (posterior occipital-parietal cortex

being the hub) were found to overlap in the temporal lobe. For chronic schizophrenis (CS, 69
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medicated patients and 62 controls), disease network was dominated by thalamocortical connec-

tivities, and overlapped with symptom network in the middle frontal gyrus. We found that

symptom network mediates the relationship between disease network and symptom scores in

FEP, but was unable to define a relationship between them for the smaller CS population. Our

results suggest that the disease network distinguishing core functional pathology in resting-state

brain may be responsible for symptom expression in FES through a wider brain network associated

with core symptoms. We hypothesize that top–down control from heteromodal prefrontal cortex

to posterior transmodal cortex contributes to positive symptoms of schizophrenia. Our work also

suggests differences in mechanisms of symptom expression between FES and CS, highlighting a

need to distinguish between these groups.

K E YWORD S

disease association study, functional brain network, resting-state fMRI, schizophrenia, symptom

association study

1 | INTRODUCTION

Resting-state fMRI is a useful tool for exploring the functional organiza-

tion of the brain and has revealed differences in functional connectivity

(herein called disease edges, which form the disease network) in a num-

ber of psychiatric disorders including schizophrenia (Camchong, Mac-

Donald, Bell, Mueller, & Lim, 2011; Cheng et al., 2015a; Guo, Kendrick,

Yu, Wang, & Feng, 2014; Liu et al., 2008; Zhang, Kendrick, Lu, & Feng,

2015), depression (Fitzgerald, Laird, Maller, & Daskalakis, 2008; Lui

et al., 2011; Tao et al., 2013), anxiety (Cui et al., 2016; Sylvester et al.,

2012; Liu, et al., 2015), autism (Cheng, Rolls, Gu, Zhang, & Feng, 2015b;

M€uller et al., 2011), and attention deficit hyperactivity disorder (ADHD)

(Castellanos & Proal, 2012; Mazaheri et al., 2010). Among these, schizo-

phrenia has received the greatest attention (Rosenberg et al., 2016).

However, a consensus network describing the relationships

between symptom expression and brain network activity differences

has been difficult to distill (Fornito, Zalesky, Pantelis, & Bullmore,

2012). We reviewed the literature again. Using “schizophrenia,”

“resting-state,” “fMRI,” and “symptom” (and their combinations) as key-

words, we identified 300 articles in a search of PubMed. We found 50/

300 describing correlations between altered functional connectivity (or

gray matter volume) and symptom scores. Network models developed

for schizophrenia most typically failed to show significant correlations

with symptom scores: 13/50 found no significant correlations (p> .05,

uncorrected), 37/50 articles reported correlations without adjusting

significance threshold for multiple correlations and only 3/50 reported

significant correlations with fully corrected p values (p< .05) (see Sup-

porting Information, Figure S1 and Supporting Information, Table S8

for the psychopathology scales, imaging measures and corresponding p

value in these papers). Several factors may have contributed to this,

including the lack of simple, direct relationships between brain disease

pathology, and symptom expression (e.g., because of intrinsic adaptive

mechanisms; Bhandari, Voineskos, Daskalakis, Rajji, & Blumberger,

2016), heterogeneity of disease mechanisms and duration across the

populations studied, the effects of treatments and small sample sizes.

For this report, we readdressed the challenge, applying a novel

approach. First, rather than developing network models for a population

based on a priori regions of interest (ROI), we have undertaken a Disease

Association Study (DAS), in which edges in the network were defined based

on disease associated differences in whole-brain functional connectivity

(Camchong et al., 2011; Cheng et al., 2015a; Guo et al., 2014; Liu et al.,

2008). Rather than using only a simple DAS, which defines pathological dif-

ferences in connectivities relative to a reference (healthy) population, we

extended concepts underpinning recent work of Rosenberg et al. (2016) by

performing in parallel a Symptom Association Study (SAS) that searches for

functional connectivities significantly correlated with the severity of symp-

toms of schizophrenia (symptom edges). We then integrated them to test

the hypothesis that the two types of networks interact in the genesis of the

expression of symptoms, i.e., that nodes in symptom network mediate rela-

tionships between disease pathology and the expression of symptoms.

We tested the hypothesis with a unique, large dataset of drug-naïve

FES patients. To better understand possible sources of heterogeneity in the

earlier literature, we also explored further whether these relationships

change in medicated patients with chronic disease. For both datasets, we

identified associated disease (by DAS) and symptom (by SAS) networks. We

estimated their correlations with each other and with symptoms and cre-

ated an edge-bicolor graph integrating the disease and symptom networks

(in which each network is represented by a color) to define their topological

coupling. We then explored relationships between disease and symptom

networks and symptom expression formally with a mediation analysis.

2 | METHODS

2.1 | Subjects

The first episode schizophrenia dataset includes 358 subjects (180 con-

trols; 178 drug-naïve patients) from Huaxi Hospital, as reported in

2 | LIU ET AL.3504 LIU et al.
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2 | METHODS

2.1 | Subjects

The first episode schizophrenia dataset includes 358 subjects (180 con-

trols; 178 drug-naïve patients) from Huaxi Hospital, as reported in

2 | LIU ET AL.

previous papers (Lui, et al., 2009; Li et al., 2016). The chronic schizo-

phrenia dataset includes 131 Taiwanese subjects (62 controls; 69 medi-

cated patients) from National Taiwan University Hospital, also reported

in a previous paper (Guo et al., 2014) (see Table 1 for detailed demo-

graphics and Supporting Information, Table S1 for drug treatments of

chronic patients). All patients were identified according to DSM-IV

diagnostic criteria by qualified psychiatrists, and symptom severity was

assessed (Li et al., 2016) using the Positive and Negative Syndrome

Scale (PANSS). Exclusion criteria included (1) presence of other DSM-

IV disorders, (2) history of substance abuse, and (3) clinically significant

head trauma. Using DSM-IV criteria, healthy controls were confirmed

to be free of schizophrenia or other Axis 1 disorders and not to have a

history of substance abuse or clinically significant head trauma. Written

informed consent was obtained from all participants, and ethical guide-

lines were approved by the Institutional Review Boards (IRB) of the

respective hospitals (mainland China and Taiwan).

2.2 | Data acquisition

For the FES dataset, functional images were collected by using a

gradient-echo Echo-Planar Imaging (EPI) sequence (repetition time

(TR)/echo time (TE) 5 2,000/30 ms, flip angle5908). The slice thick-

ness was 5 mm (no slice gap), with a matrix size of 64 3 64 and a field

of view (FOV) of 240 3 240 mm2, resulting in a voxel size of

3.75 3 3.75 3 5 mm3. Each brain volume was comprised of 30 axial

slices, and each functional run contained 200 image volumes. During

data acquisition, the subjects were instructed to keep their eyes closed

but not fall asleep. In addition, high-resolution T1-weighted volumetric

3D images were obtained using a spoiled gradient recall (SPGR)

sequence (TR58.5 ms, TE53.4 ms, flip angle5128, slice

thickness51 mm) with an 8-channel phased-array head coil. A FOV of

240 3 240 mm2 was used, with an acquisition matrix comprising 256

readings of 128 phase-encoding steps with 156 slices. After interpolat-

ing the T1 images in plane, the final matrix-size is 512 3 512 with an

in-plane solution of 0.473 0.47 mm2.

For the chronic schizophrenia dataset, all subjects underwent a

structural and functional MRI scan in a single session using a 3 T MR

system (TIM Trio, Siemens, Erlangen, Germany). The resting-state fMRI

was performed with a gradientecho echo planar sequence. The fMRI

acquisition parameters were as follows: TR 52,000 ms, TE524 ms,

FOV5256 3 256 mm2, matrix 64 3 64, slice thickness 3 mm and flip

angle5908. For each participant, 34 trans-axial slices with no gap were

acquired to encompass the whole brain volume. The scan time of the

resting-state fMRI was 6 min. All subjects were instructed to keep their

eyes closed, but not fall asleep. In addition, a whole brain high-

resolution T1-weighted MR image was acquired using a magnetization-

prepared rapid gradient echo (MPRAGE) sequence (TR52,000 ms,

TE52.9 ms, inversion time5900 ms, matrix size5192 3 256,

spatial resolution51 3 1 mm2, FOV5192 3 256 mm2, slice

thickness51 mm without gap).

TABLE 1 Demographic and clinical characteristics of schizophrenia patients and matched controls in Huaxi (first episode) and Taiwan (chronic
stage) datasets

Schizophrenia patients (161) Controls (150) p value

First episode: Huaxi dataset

Age (years) 24.03 6 8.11 25.81 6 8.72 .09

Education (years) 11.976 3.31 13.09 63.26 .03

Sex (M/F) 81/79 80/70 .63

Illness duration (months) (n5157) 0.9962.16 n.a. n.a.

PANSS aggregate score (n5157) 91.236 16.51 n.a. n.a.

PANSS: positive scale (n 5157) 24.696 5.81 n.a. n.a.

PANSS: negative scale (n5157) 19.596 7.60 n.a. n.a.

PANSS: general scale (n5 157) 46.976 8.85 n.a. n.a.

Chronic: Taiwan dataset

Schizophrenia patients (69) Controls (62) p value

Age (years) 31.6 6 9.6 29.9 6 8.6 .28

Education (years) 14.19 6 2.16 15.29 6 2.39 .06

Sex (M/F) 35/34 25/37 .24

Illness duration (years) (n5 69) 7.1766.61 n.a. n.a.

PANSS aggregate score (n564) 52.816 16.78 n.a. n.a.

PANSS: positive scale (n 564) 11.926 4.70 n.a. n.a.

PANSS: negative scale (n5 64) 13.616 6.32 n.a. n.a.

PANSS: general scale (n5 64) 27.286 9.63 n.a. n.a.
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2.3 | Data preprocessing

All fMRI data were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.

uk/spm) and a Data Processing Assistant for Resting-State fMRI

(DPARSF). The data were realigned and normalized to a standard tem-

plate (Montreal Neurological Institute) and resampled to 3 3 3 3 3 mm3.

All fMRI time-series underwent band-pass temporal filtering (0.01–0.08

Hz), nuisance signal removal from ventricles, deep white matter, 6 rigid-

body motion correction parameters. Global signal regression, which

regressed out the averaged time series over all voxels in the brain from

the fMRI time-series, is still a long-lasting controversial procedure in the

preprocessing of fMRI data. Different confused and contradictory guide-

lines are provided in the literatures (Fox, Zhang, Snyder, & Raichle, 2009;

Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Murphy & Fox,

2017). Although GSR may lead to downward shift of the distribution of

correlations to a mean correlation of zero (which also found in our two

datasets and shown in the Supporting Information, Figure S2), it can help

remove non-neuronal sources of global variance and help improve the

consistency of functional connectivities within-subject across scans (Song

et al., 2012). In our study, the GSR was adopted, as the raw data proc-

essed with GSR has better generalization performance using our model

(the results without GSR were given in the Supporting Information for

comparison). Finally, we implemented additional careful volume censoring

(scrubbing) movement correction as reported by Power et al. (2014) to

ensure that head motion artifacts are not driving observed effects. The

mean framewise displacement was computed with framewise displace-

ment threshold for displacement being 0.5 mm. In addition to the frame

corresponding to the displaced time point, one preceding and two suc-

ceeding time points were also deleted to reduce the “spill-over” effect of

head movements. Subjects with more than 10% displaced frames flagged

were completely excluded from the analysis as it is likely that such high-

level of movement would have had an influence on several volumes.

After quality control (excluding subjects with poor imaging quality by

manually checking and that with large head motion), first-episode dataset

has 150 controls and 161 patients left and the chronic dataset has 62

controls and 69 medicated patients left. A detailed discussion of global

signal removal and data scrubbing are also provided in the Supporting

Information, Methods. 90 regional time series then were extracted by

averaging voxel time series within each anatomically defined region (using

the Automated-Anatomical-Labeling template (Tzourio-Mazoyer et al.,

2002), and the names of the ROIs and their corresponding abbreviations

are listed in Supporting Information, Table S2). From these, a whole-brain

functional network (90 3 90) was constructed for each subject which

included 4005 functional connectivities based on Pearson correlations

between regional BOLD signals in the individual ROIs used as a basis for

describing nodes in the brain network. All the 4005 FCs (both positive

and negative) were used in following analysis.

2.4 | Bicolor graph construction: Disease and

symptom networks

An edge-bicolor graph is constructed from separately generated disease

and symptom network graphs. A disease network is defined through a

Disease Association Study (DAS). It represents connectivities differen-

tially expressed in people with the disease of interest relative to people

who are healthy. A symptom network is defined through a Symptom

Association Study (SAS), which defines correlations between brain con-

nectivities and symptoms amongst patients with the disease of interest.

For constructing the both DAS and SAS, we used “leave-one-out”

cross-validation (i.e., single subjects were selected iteratively to test the

performance of a model trained with data from the remaining subjects

in each leave-one-out trial within a set, the size of which was identical

to that of the total population available) to maximize the stability of

their edges (Rosenberg et al., 2016) and to avoid the “double dipping”

problem (Dubois & Adolphs, 2016). Finally, the edge-bicolor graph was

built as the overlap of edges defined in the two different kinds of

networks.

In this instance, to construct a DAS, whole brain connectivity

data from the schizophrenia patients and from matched healthy con-

trols were used to build classifiers distinguishing the two groups.

First, the area under the receiver operating characteristic (ROC)

curve (AUC) was employed to represent predictive power for each

of the 4005 edges (by using the MATLAB function “rankfeatures”

with age, sex, root-mean-square displacements of head movement

and education years as covariates). Further, to build the optimal

classifier, we changed the AUC threshold (AUCthreshold), which was

used to select disease-related edges, from 0.6 to 0.8 in steps of

0.05. Under each AUCthreshold, suprathreshold edges were identified

and separated into two groups: edges characterizing stronger func-

tional connectivities in patients than in controls (increase edges) and

the reverse (decrease edges). The sum of these edges for each group

was expressed as the classification “strength” for that subject. The

strengths of the two groups were fed into a logistic linear regression

model with age, sex, root-mean-square displacements of head

movement and education years as covariates to test the potential

for prediction of disease state for each AUCthreshold using the “leave-

one-out” method. Performance was assessed serially across each

threshold step as the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve; the optimal AUCthreshod was

determined by selecting the threshold that produced the highest

AUC across all such “leave-one-out” trial sets (Figure 1; i.e., highest

classification accuracy in all “leave-one-out” trials). We selected

those edges (increased or decreased edges) appeared in each leave-

one-out trail under the optimal AUCthreshold to form the disease

network.

We adopted a similar “leave-one-out” procedure to define opti-

mal symptom edges (SAS) using the whole brain functional connec-

tivities and the corresponding global symptom scores from each of

the schizophrenia patients. We calculated the partial correlation

coefficient between each functional connectivity and associated

patient symptom score across patients with age, sex, root-mean-

square displacements of head movement, and education years as

covariates and obtained the corresponding p value. We iterated p

value thresholds (pthreshold) from 0.0005 to 0.01 in steps of 0.0005.

Edges with p values smaller than the pthreshold were identified and

divided into two groups that were either positively or negatively

4 | LIU ET AL.3506 LIU et al.
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(DPARSF). The data were realigned and normalized to a standard tem-

plate (Montreal Neurological Institute) and resampled to 3 3 3 3 3 mm3.

All fMRI time-series underwent band-pass temporal filtering (0.01–0.08

Hz), nuisance signal removal from ventricles, deep white matter, 6 rigid-

body motion correction parameters. Global signal regression, which

regressed out the averaged time series over all voxels in the brain from

the fMRI time-series, is still a long-lasting controversial procedure in the

preprocessing of fMRI data. Different confused and contradictory guide-

lines are provided in the literatures (Fox, Zhang, Snyder, & Raichle, 2009;

Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Murphy & Fox,

2017). Although GSR may lead to downward shift of the distribution of

correlations to a mean correlation of zero (which also found in our two

datasets and shown in the Supporting Information, Figure S2), it can help

remove non-neuronal sources of global variance and help improve the

consistency of functional connectivities within-subject across scans (Song

et al., 2012). In our study, the GSR was adopted, as the raw data proc-

essed with GSR has better generalization performance using our model

(the results without GSR were given in the Supporting Information for

comparison). Finally, we implemented additional careful volume censoring

(scrubbing) movement correction as reported by Power et al. (2014) to

ensure that head motion artifacts are not driving observed effects. The

mean framewise displacement was computed with framewise displace-

ment threshold for displacement being 0.5 mm. In addition to the frame

corresponding to the displaced time point, one preceding and two suc-

ceeding time points were also deleted to reduce the “spill-over” effect of

head movements. Subjects with more than 10% displaced frames flagged

were completely excluded from the analysis as it is likely that such high-

level of movement would have had an influence on several volumes.

After quality control (excluding subjects with poor imaging quality by

manually checking and that with large head motion), first-episode dataset

has 150 controls and 161 patients left and the chronic dataset has 62

controls and 69 medicated patients left. A detailed discussion of global

signal removal and data scrubbing are also provided in the Supporting

Information, Methods. 90 regional time series then were extracted by

averaging voxel time series within each anatomically defined region (using

the Automated-Anatomical-Labeling template (Tzourio-Mazoyer et al.,

2002), and the names of the ROIs and their corresponding abbreviations

are listed in Supporting Information, Table S2). From these, a whole-brain

functional network (90 3 90) was constructed for each subject which

included 4005 functional connectivities based on Pearson correlations

between regional BOLD signals in the individual ROIs used as a basis for

describing nodes in the brain network. All the 4005 FCs (both positive

and negative) were used in following analysis.

2.4 | Bicolor graph construction: Disease and

symptom networks

An edge-bicolor graph is constructed from separately generated disease

and symptom network graphs. A disease network is defined through a

Disease Association Study (DAS). It represents connectivities differen-

tially expressed in people with the disease of interest relative to people

who are healthy. A symptom network is defined through a Symptom

Association Study (SAS), which defines correlations between brain con-

nectivities and symptoms amongst patients with the disease of interest.

For constructing the both DAS and SAS, we used “leave-one-out”

cross-validation (i.e., single subjects were selected iteratively to test the

performance of a model trained with data from the remaining subjects

in each leave-one-out trial within a set, the size of which was identical

to that of the total population available) to maximize the stability of

their edges (Rosenberg et al., 2016) and to avoid the “double dipping”

problem (Dubois & Adolphs, 2016). Finally, the edge-bicolor graph was

built as the overlap of edges defined in the two different kinds of

networks.

In this instance, to construct a DAS, whole brain connectivity

data from the schizophrenia patients and from matched healthy con-

trols were used to build classifiers distinguishing the two groups.

First, the area under the receiver operating characteristic (ROC)

curve (AUC) was employed to represent predictive power for each

of the 4005 edges (by using the MATLAB function “rankfeatures”

with age, sex, root-mean-square displacements of head movement

and education years as covariates). Further, to build the optimal

classifier, we changed the AUC threshold (AUCthreshold), which was

used to select disease-related edges, from 0.6 to 0.8 in steps of

0.05. Under each AUCthreshold, suprathreshold edges were identified

and separated into two groups: edges characterizing stronger func-

tional connectivities in patients than in controls (increase edges) and

the reverse (decrease edges). The sum of these edges for each group

was expressed as the classification “strength” for that subject. The

strengths of the two groups were fed into a logistic linear regression

model with age, sex, root-mean-square displacements of head

movement and education years as covariates to test the potential

for prediction of disease state for each AUCthreshold using the “leave-

one-out” method. Performance was assessed serially across each

threshold step as the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve; the optimal AUCthreshod was

determined by selecting the threshold that produced the highest

AUC across all such “leave-one-out” trial sets (Figure 1; i.e., highest

classification accuracy in all “leave-one-out” trials). We selected

those edges (increased or decreased edges) appeared in each leave-

one-out trail under the optimal AUCthreshold to form the disease

network.

We adopted a similar “leave-one-out” procedure to define opti-

mal symptom edges (SAS) using the whole brain functional connec-

tivities and the corresponding global symptom scores from each of

the schizophrenia patients. We calculated the partial correlation

coefficient between each functional connectivity and associated

patient symptom score across patients with age, sex, root-mean-

square displacements of head movement, and education years as

covariates and obtained the corresponding p value. We iterated p

value thresholds (pthreshold) from 0.0005 to 0.01 in steps of 0.0005.

Edges with p values smaller than the pthreshold were identified and

divided into two groups that were either positively or negatively
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correlated to the symptom scores. The sum of edges for each group

then was used as the independent variable to fit a linear regression

model with the symptom score as the dependent variable, and age,

sex, root-mean-square displacements of head movement, and educa-

tion years as nuisance covariates. We iteratively ran “leave-one-out”

trials m times (m is the number of patients) for each pthreshold, to

derive a patient-specific prediction score. The optimal pthreshold was

selected as that producing the highest correlation between real and

predicted symptom scores (Figure 1). We selected those edges

appeared in each leave-one-out trail under the optimal pthreshold to

form the symptom network.

After identifying the disease network and symptom networks, we

then constructed an edge-bicolor graph G that included both networks.

The edges of the bicolor graph consisted of two parts: L 5 {Ldisease,

Lsymptom}, where Ldisease and Lsymptom refer to the disease and symptom

edges, respectively. The vertices of the bicolor graph therefore also

consisted of two parts: V 5 {Vdisease, Vsymptom}, where Vdiff denotes the

vertices associated with the disease network, and Vsymptom represents

the vertices of the symptom network.

To show qualitatively the difference of the correlations between

the disease network and the symptom network with the symptom

score, we explored the variance in symptoms that is explained by dis-

ease network and symptom network in two separate regression

models. With the symptom score being the dependent variable, the

sum of the increased/decreased edges in disease network, and the

sum of the positively/negatively related edges in symptom network

were used as the independent variables in the respective regression

model. An adjusted R2 (coefficient of determination) was used to

express the proportion of the symptom score that could be explained

by the model.

FIGURE 1 Flow chart of DAS (left) and SAS (right) approach in identifying disease edges and symptom edges in schizophrenia patients
[Color figure can be viewed at wileyonlinelibrary.com]
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2.5 | Significance of the prediction results:

Permutation analysis

To determine whether the classification accuracy and predicted scores,

we obtained from our DAS and SAS are significantly better than ran-

dom, the nonparametric permutation procedure was adopted. For the

DAS analysis, in each permutation, we randomly shifted the labels

(patient or control) of participants and ran the DAS analysis to obtain

the highest AUC. The null distribution for the highest AUC is formed

by running the permutation procedure 1000 times. Based on the null

distribution, the p value was obtained. For the SAS analysis, in each

permutation run, we randomly shifted the scores across the patients

and ran the SAS analysis to obtain the highest correlation between the

real scores and predicted scores. We also ran the permutation proce-

dure 1000 times to obtain the null distribution for the highest correla-

tion between the predicted scores and the real scores. The p value of

our prediction results was then obtained base on the null distribution.

2.6 | Overlap between nodes in disease and symptom
networks: Permutation analysis

Finally, an additional permutation analysis was adopted to show that

the overlap of nodes between disease and the symptom networks

were significantly larger than the random case. In each permutation

run, we randomly selected the same number of edges as the disease

and symptom networks form the whole network and calculated the

number of the associated nodes common to the randomly selected dis-

ease and symptom network. We ran the permutation 10,000 times to

form the null distribution of the number of the overlapped nodes

between the two networks. The p value was then obtained based on

the null distribution.

2.7 | Mediation analysis between the disease and
symptom networks and symptom expression

To further explore the mechanism that underlies the correlation

between the disease network, symptom network and the symptom

scores, mediation analysis, which tests whether a covariance between

two variables (X and Y) can be explained by a third variable (M) was

used. Here, the standard 3-variable path model (Baron & Kenny, 1986)

was employed. We showed our model in Figure 4a. Our hypothesis is

that the symptom networks may mediate the relationship between the

disease networks and the symptom score. In the model, we used the

sum of disease edges in the disease networks as the variable X, the

symptom scores as Y and the sum of edges in the symptom networks

as M. Path a is the estimated linear relationship between X and M. Path

b is the linear M–Y relationship controlling for x. Path c represents the

overall X–Y relationship and the c0 path is the direct X–Y effect control-

ling for the M. The significance of the difference (c–c0), which can be

regard as the mediation effect, can be tested by assessing the signifi-

cance of the product of the path coefficients a3b (Wager, Davidson,

Hughes, Lindquist, & Ochsner, 2008). Age, sex, root-mean-square dis-

placements of head movement, and education years were served as

the covariates in all of our mediation analysis.

For the FES patients, as positive symptom score was used to

obtain the symptom networks, we used the positive symptom score as

variable Y in the model. As for the chronic patients, the symptom net-

work is for the negative symptom score, so we used the negative score

as Y. For each of the dataset, as two disease networks (increased/

decreased disease network) and two symptom networks (positively

related/negatively related disease network) were obtained from our

DAS and SAS analysis. We used one of the two disease networks as X

and one of the two symptom networks as M, which resulted in 4 possi-

ble combinations (2 3 2). Thus, there are four different models for

each dataset (see Figure 4b,c for details). Then, the accelerated, bias-

corrected bootstrap test (Efron & Tibshirani, 1993) with 10,000 boot-

strap samples was used to test the significance of a, b, and a3b path

coefficients, respectively. If all of the paths, that is, a, b, and a3b path

are significant, we can confirm our hypothesis that the relationship

between the disease network and the symptom are mediated by the

symptom network. All the mediation analyses were performed using

the MATLAB Multilevel Mediation and Moderation (M3) Toolbox

(https://github.com/canlab/MediationToolbox).

3 | RESULTS

We studied two large cohorts of schizophrenia patients and age- and

sex-matched controls (Table 1). FES (mean, 24 years old) had an illness

duration of less than a month and were drug-naive, while CS patients

(mean, 31 years old) had a mean duration of illness in excess of 7 years

(mean, 7.2 years).

3.1 | The disease network and the symptom network

For the FES dataset, the optimal AUCthreshold in DAS analysis was

found to be 0.63, which led to an AUC of 0.81 for the test set; 75.47%

of patients and 71.81% of health controls were correctly classified. The

nonparametric permutation analysis was used to test the significance

of the AUC we obtained. One thousand times of random permutation

were performed and resulted in significance at p< .001 (see Supporting

Information, Figure S3a for more details). The disease network identi-

fied under the optimal AUCthreshold included 57 edges (19 from relative

increases and 38 from decreases). The optimal SAS analysis pthreshold

was .02, which achieved a correlation of r5 .30 between predicted and

real symptom scores (p51.36 3 1024). The nonparametric permuta-

tion analysis was used to test the significance of the correlation

between our predicted symptom scores and real scores. One thousand

times of random permutation were performed and resulted in signifi-

cance at p5 .003 (see Supporting Information, Figure S3a for more

details). The associated symptom network included 28 edges (11 corre-

lated positively and 17 correlated negatively with the positive symptom

scale). Note that our classification accuracy is not the highest amongst

literatures, as the goal here is to determine the optimal AUCthreshold so

that the disease network can be properly identified, rather than to

obtain the highest classification accuracy. A higher accuracy could be

obtained by using multiple imaging modalities and optimizing feature-

selection strategies and classification schemes.
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2.5 | Significance of the prediction results:

Permutation analysis

To determine whether the classification accuracy and predicted scores,

we obtained from our DAS and SAS are significantly better than ran-

dom, the nonparametric permutation procedure was adopted. For the

DAS analysis, in each permutation, we randomly shifted the labels

(patient or control) of participants and ran the DAS analysis to obtain

the highest AUC. The null distribution for the highest AUC is formed

by running the permutation procedure 1000 times. Based on the null

distribution, the p value was obtained. For the SAS analysis, in each

permutation run, we randomly shifted the scores across the patients

and ran the SAS analysis to obtain the highest correlation between the

real scores and predicted scores. We also ran the permutation proce-

dure 1000 times to obtain the null distribution for the highest correla-

tion between the predicted scores and the real scores. The p value of

our prediction results was then obtained base on the null distribution.

2.6 | Overlap between nodes in disease and symptom
networks: Permutation analysis

Finally, an additional permutation analysis was adopted to show that

the overlap of nodes between disease and the symptom networks

were significantly larger than the random case. In each permutation

run, we randomly selected the same number of edges as the disease

and symptom networks form the whole network and calculated the

number of the associated nodes common to the randomly selected dis-

ease and symptom network. We ran the permutation 10,000 times to

form the null distribution of the number of the overlapped nodes

between the two networks. The p value was then obtained based on

the null distribution.

2.7 | Mediation analysis between the disease and
symptom networks and symptom expression

To further explore the mechanism that underlies the correlation

between the disease network, symptom network and the symptom

scores, mediation analysis, which tests whether a covariance between

two variables (X and Y) can be explained by a third variable (M) was

used. Here, the standard 3-variable path model (Baron & Kenny, 1986)

was employed. We showed our model in Figure 4a. Our hypothesis is

that the symptom networks may mediate the relationship between the

disease networks and the symptom score. In the model, we used the

sum of disease edges in the disease networks as the variable X, the

symptom scores as Y and the sum of edges in the symptom networks

as M. Path a is the estimated linear relationship between X and M. Path

b is the linear M–Y relationship controlling for x. Path c represents the

overall X–Y relationship and the c0 path is the direct X–Y effect control-

ling for the M. The significance of the difference (c–c0), which can be

regard as the mediation effect, can be tested by assessing the signifi-

cance of the product of the path coefficients a3b (Wager, Davidson,

Hughes, Lindquist, & Ochsner, 2008). Age, sex, root-mean-square dis-

placements of head movement, and education years were served as

the covariates in all of our mediation analysis.

For the FES patients, as positive symptom score was used to

obtain the symptom networks, we used the positive symptom score as

variable Y in the model. As for the chronic patients, the symptom net-

work is for the negative symptom score, so we used the negative score

as Y. For each of the dataset, as two disease networks (increased/

decreased disease network) and two symptom networks (positively

related/negatively related disease network) were obtained from our

DAS and SAS analysis. We used one of the two disease networks as X

and one of the two symptom networks as M, which resulted in 4 possi-

ble combinations (2 3 2). Thus, there are four different models for

each dataset (see Figure 4b,c for details). Then, the accelerated, bias-

corrected bootstrap test (Efron & Tibshirani, 1993) with 10,000 boot-

strap samples was used to test the significance of a, b, and a3b path

coefficients, respectively. If all of the paths, that is, a, b, and a3b path

are significant, we can confirm our hypothesis that the relationship

between the disease network and the symptom are mediated by the

symptom network. All the mediation analyses were performed using

the MATLAB Multilevel Mediation and Moderation (M3) Toolbox

(https://github.com/canlab/MediationToolbox).

3 | RESULTS

We studied two large cohorts of schizophrenia patients and age- and

sex-matched controls (Table 1). FES (mean, 24 years old) had an illness

duration of less than a month and were drug-naive, while CS patients

(mean, 31 years old) had a mean duration of illness in excess of 7 years

(mean, 7.2 years).

3.1 | The disease network and the symptom network

For the FES dataset, the optimal AUCthreshold in DAS analysis was

found to be 0.63, which led to an AUC of 0.81 for the test set; 75.47%

of patients and 71.81% of health controls were correctly classified. The

nonparametric permutation analysis was used to test the significance

of the AUC we obtained. One thousand times of random permutation

were performed and resulted in significance at p< .001 (see Supporting

Information, Figure S3a for more details). The disease network identi-

fied under the optimal AUCthreshold included 57 edges (19 from relative

increases and 38 from decreases). The optimal SAS analysis pthreshold

was .02, which achieved a correlation of r5 .30 between predicted and

real symptom scores (p51.36 3 1024). The nonparametric permuta-

tion analysis was used to test the significance of the correlation

between our predicted symptom scores and real scores. One thousand

times of random permutation were performed and resulted in signifi-

cance at p5 .003 (see Supporting Information, Figure S3a for more

details). The associated symptom network included 28 edges (11 corre-

lated positively and 17 correlated negatively with the positive symptom

scale). Note that our classification accuracy is not the highest amongst

literatures, as the goal here is to determine the optimal AUCthreshold so

that the disease network can be properly identified, rather than to

obtain the highest classification accuracy. A higher accuracy could be

obtained by using multiple imaging modalities and optimizing feature-

selection strategies and classification schemes.
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For the CS dataset, the optimal AUCthreshold in the DAS analysis

was 0.75. The resulting AUC is 0.85 in the test dataset allowed 78.26%

of patients and 80.65% of health controls were classified correctly.

One thousand times of nonparametric permutation were performed to

test the significance of our AUC, resulting in a p value< .001 (see Sup-

porting Information, Figure S3b for more details). The disease network

identified under the optimal AUCthreshold included 19 edges (11

increase and 8 decrease edges). The optimal pthreshold was 0.03 for the

SAS analysis, under which the correlation between the predicted and

the real symptom score is r5 .64 (p52.03 3 1028). One thousand

times nonparametric permutation was performed to test the signifi-

cance of the correlation, resulting in a p value< .001 (see Supporting

Information, Figure S3b for more details). The symptom network

obtained consisted of 68 edges (17 positively and 51 negatively corre-

late with the schizophrenia score).

3.2 | Characterizing schizophrenia patients with a

disease network

The disease network for FES patients identified a wide range of differ-

ences in strengths of edges defined by functional connectivities relative

to the matched healthy volunteers. Major differences were found for

connectivities between the prefrontal (orbitofrontal and inferior frontal

cortex, and the medially adjacent rectus gyrus) and the parietal (precu-

neus and angular gyrus) and temporal (temporal pole) cortices and the

thalamus (Figure 2a and Supporting Information, Table S3). By contrast,

the disease network for the CS cohort identified major differences in

functional connectivities between the thalamus and middle and supe-

rior prefrontral cortices and the postcentral gyrus (Figure 3a and Sup-

porting Information, Table S5).

3.3 | Symptom networks highlight functional

connectivities distinct from those in the disease

networks

For FES, the symptom network was defined by associations with posi-

tive symptoms. These defined edges between the middle temporal

gyrus or temporal pole and both the occipital lobe (lingual, calcarine,

and fusiform gyri) and midline cingulate cortex (middle cingulate gyrus)

(Figure 2b and Supporting Information, Table S4). By contrast, for the

CS patients, the symptom network was related to negative symptoms

and prominently involved functional connectivities between the occipi-

tal (calcarine, lingual, and fusiform gyri) and the parietal (posterior cin-

gulate gyrus, pre/postcentral gyrus) and temporal (Heschel’s, middle,

and temporal gyri) cortices (Figure 3b and Supporting Information,

Table S6).

3.4 | Common nodes relate disease and symptom

networks

The bicolor graph representation facilitates description of common

nodes (topological coupling) relating the disease and symptom net-

works (Figures 2 and 3). For the FES patients, this highlighted common

nodes in the temporal (temporal pole, middle temporal gyrus) and cal-

carine cortex. As seen in Figure 2c, these regions are hubs in both net-

works (nodes with large number of both disease and symptom edges).

A different set of functional connectivities better described the overlap

between disease and symptom networks for CS patients (Figure 3c).

This highlighted the thalamus and postcentral gyrus as common hubs.

The permutation analysis showed that the number of overlapping

nodes between the disease and symptom networks were significantly

higher than chance (p5 .0002 and .0001 for FES and CS, respectively).

3.5 | Symptom networks better explain schizophrenic

symptoms than do disease networks

As expected, symptom edges showed stronger correlations with symp-

tom scores than did disease edges (Supporting Information, Figure

S4a), although they did not distinguish patients from controls well (Sup-

porting Information, Tables S4 and S6). For FES patients, the positive

symptom score was significantly higher than the negative score

(p52.12 3 10237) and the prediction accuracy for the positive score is

significantly better than that of the negative score p52.43 3 1024,

see Supporting Information, Figure S5a for details. The symptom net-

work explained over 2.5-fold more variance in symptoms across the

cohort (29%) than did the disease network (12%). For the patients with

chronic schizophrenia, the negative symptom score was higher than

the positive symptom score (p57.88 3 1028) and the prediction accu-

racy for the negative score is significantly better than that of the posi-

tive score (p5 .0418, see Supporting Information, Figure S5b for

details). Again, the symptom network could explain greater than 2.5-

fold more of the variance in symptoms (50%) than the disease network

(19%) (Supporting Information, Figure S4b).

3.6 | Symptom networks mediate relationships

between disease networks and symptoms

Disease and the symptom network edges showed strong correlations

in the FES patients (Supporting Information, Table S7a). We tested for

relationships with symptom expression formally using mediation analy-

sis. For the FES patients, we found evidence supporting a model in

which the symptom network mediates relationships between func-

tional connectivity differences associated with disease and symptom

expression. We tested all four possible combinations involving the sum

of increased/decreased disease edges, the sum of positively related/

negatively related symptom edges, and positive symptom score and

found significant mediation effect of the symptom network on the rela-

tionships between disease network and the expression of positive

symptoms of schizophrenia with path a, b, and a3b are significant for

all four models (Table 2). However, we were unable to demonstrate a

similar relationship for the chronic state patients with negative symp-

toms (Table 3). For this cohort, the correlation between the disease

and symptom networks is lower (Supporting Information, Table S7b)

and a significant relationship between the disease and symptom net-

works and symptom scores was not found (Figure 4b). In addition, we

also tested the significance of another possible mediation model (the
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symptom mediates the relationship between the disease network and

symptom network) in the FES dataset and did not found significant

mediation effect, details in Supporting Information, Figure S7 and

Table S9.

4 | DISCUSSION

Here we have characterized disease network and symptom network

for populations of patients with schizophrenia of two different stages.

FIGURE 2 Disease network and symptom network identified in FES patients, which were shown in an edge-bicolor graph, with disease edges rep-
resented by blue and symptom edges by red. The disease network consists of functional connectivities significantly changed in FES patients com-
pared to matched controls (including all increased and decreased disease edges identified in DAS) (a, see Supporting Information, Table S3) and the
symptom network consists of functional connectivities significantly correlated with positive PNASS scores of FES patients (including positively-
related and negatively-related symptom edges identified in SAS) (b, Supporting Information, Table S4. The topological coupling between the disease
network and symptom network are shown in c, which is the integration of a and b. The color of the outside circle denotes the 90 different automatic
anatomical labelling (AAL) regions. The color of the inside circle denotes the number of edges of the corresponding node (deep color means a hub
node). In a, deep and light blue indicates increased and decreased disease edges in patients compared to controls. In b, deep and light red indicates
negatively and positively related symptom edges (with positive symptom scores) in patients. [Color figure can be viewed at wileyonlinelibrary.com]
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symptom mediates the relationship between the disease network and

symptom network) in the FES dataset and did not found significant

mediation effect, details in Supporting Information, Figure S7 and

Table S9.

4 | DISCUSSION

Here we have characterized disease network and symptom network

for populations of patients with schizophrenia of two different stages.

FIGURE 2 Disease network and symptom network identified in FES patients, which were shown in an edge-bicolor graph, with disease edges rep-
resented by blue and symptom edges by red. The disease network consists of functional connectivities significantly changed in FES patients com-
pared to matched controls (including all increased and decreased disease edges identified in DAS) (a, see Supporting Information, Table S3) and the
symptom network consists of functional connectivities significantly correlated with positive PNASS scores of FES patients (including positively-
related and negatively-related symptom edges identified in SAS) (b, Supporting Information, Table S4. The topological coupling between the disease
network and symptom network are shown in c, which is the integration of a and b. The color of the outside circle denotes the 90 different automatic
anatomical labelling (AAL) regions. The color of the inside circle denotes the number of edges of the corresponding node (deep color means a hub
node). In a, deep and light blue indicates increased and decreased disease edges in patients compared to controls. In b, deep and light red indicates
negatively and positively related symptom edges (with positive symptom scores) in patients. [Color figure can be viewed at wileyonlinelibrary.com]
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We discovered distinct networks for distinguishing the patients with

medication naïve, first episode schizophrenia, and those patients with

chronic disease on treatment. These differences suggest disease stage

or medication as important sources of variance in developing these

models. However, even with control for this heterogeneity, disease

networks did not explain much of the variance in symptom expression

amongst patients in either group. Symptom networks described this

better for both the FES and CS patients. Bicolor graphs relating disease

and symptom networks identified common hubs for each population. A

formal mediation analysis suggested that the symptom network medi-

ated relationships between the disease network and symptom expres-

sion for the first episode schizophrenics, who displayed predominantly

FIGURE 3 Disease network (including all increased and decreased disease edges identified in DAS) and symptom network (including

positively related and negatively related symptom edges identified in SAS) identified in chronic schizophrenia patients, which were shown in
an edge-bicolor graph, with disease edges represented by blue and symptom edges by red. The disease network and the symptom network
(consisting of functional connectivities that are correlated with negative symptom score) are detailed in Supporting Information, Tables S5
and S6, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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positive symptoms of the disease, although this could not be shown for

the predominantly negative symptoms of the chronic-stage patients.

Our work highlights differences in the functional connectivity

models between those that best classify resting state BOLD signals in

patients relative from a healthy population and those needed to explain

the variance in symptoms in the patient population. For both FES and

CS patients, differences in functional activity in prefrontal cortices con-

tributed prominently descriptions the disease networks. This is consist-

ent with considerable literature suggesting dysfunctional striatal-

prefrontal interactions as core aspects of the functional pathology of

the disease (Howes & Kapur, 2009; Simpson, Kellendonk, & Kandel,

2010). However, a network involving heteromodal temporal cortex and

parietal-occipital regions best explained positive symptom expression

in the first episode cohort.

Relationships between these alternate representations of func-

tional pathology associated with schizophrenia were highlighted in

the bicolor graphs. For FES patients, the two networks intersected

most prominently in middle temporal pole and middle temporal gyrus

(Figure 2c). The left temporal pole previously was proposed as an

important heteromodal hub for recognition and naming (Tranel,

2009) and is the locus of convergence of language streams (Spitsyna,

Warren, Scott, Turkheimer, & Wise, 2006), while the activation in

left middle temporal gyrus is associated with hallucinations (Lennox,

Bert, Park, Jones, & Morris, 1999; Onitsuka et al., 2004). These func-

tionally connected regions also are anatomically connected; the arcu-

ate fasciculus provides a putative structural basis for disease edges

(between interior frontal gyrus and middle temporal gyrus/temporal

pole). Reduced integrity of the arcuate fasciculus is associated with

auditory and verbal hallucinations (McCarthy-Jones, Oestreich, Whit-

ford, & Bank, 2015). Arguing analogously, the inferior longitudinal

fasciculus provides a possible structural basis for the symptom edges

between middle temporal gyrus/temporal pole and lingual/calcarine

gyrus.

The correlations between disease and symptom networks that we

have found are consistent with the hypotheses that the variation in

functional differences between patients and healthy volunteers are

associated for the range of symptom expression in the patient popula-

tion. For FES patients, the disease edges connecting interior frontal

gyrus and middle temporal gyrus/temporal pole correlate negatively

with symptom edges that connect middle temporal gyrus/temporal

pole and lingual/calcarine gyrus (Figure 2c) and these symptom edges,

in turn, correlate negatively with positive symptoms, mainly delusion

and hallucination (Supporting Information, Figure S6). From these rela-

tionships defined between disease edges and positive symptom via

symptom edges (Figure 4a), we predict that increases in specific disease

edge (frontal–temporal connectivities) strengths will lead to more

severe positive symptom. However, further work will be needed to

test the generalizability and predictive utility of these models.

The associations between disease edges associated with inferior

frontal gyrus, symptom edges associated with posterior sensory proc-

essing areas in the occipital and parietal cortex, and positive symptoms

like delusion and hallucination illustrate how these models can suggest

hypotheses regarding causal mechanisms. For example, the anterior–

posterior interactions suggests that prefrontal executive dysfunction

may contribute “top down” to the pathological sensory processing

responsible for positive symptoms in FES (Allen, Laroi, McGuire, & Ale-

man, 2008; Biederman, Glass, & Stacy, 1973). Such a model emphasizes

a central importance for pathological functions of the prefrontal cortex

(Allen et al., 2008; Schmack et al., 2013) in the genesis of perceptual

symptoms and conceptually links the maintenance of delusions with

top–down shaping of brain networks encoding beliefs (Allen et al.,

2008; Schmack et al., 2013).

TABLE 2 Mediation analysis results for the hypothesis that symptom networks mediate the relationship between the disease network and
the positive symptom in first-episode dataset

X M Y a path b path ab path

Z p Z p Z p

Increased disease network Positively related symptom network Positive score 23.89 <.0001 3.95 <.0001 3.95 .0002

Increased disease network Negatively related symptom network Positive score 2.77 .0057 23.66 .0003 22.70 .0068

Decreased disease network Positively related symptom network Positive score 3.46 .0005 4.08 <.0001 3.79 .0002

Decreased disease network Negatively related symptom network Positive score 23.82 <.0001 23.58 .0003 3.94 <.0001

TABLE 3 Mediation analysis results for the hypothesis that symptom networks mediate the relationship between the disease network and
the negative symptom in chronic dataset

X M Y a path b path ab path

Z p Z p Z p

Increased disease network Positively related symptom network Negative score 21.44 .1495 3.18 .0015 21.42 .1562

Increased disease network Negatively related symptom network Negative score 2.30 .0212 23.95 <.0001 21.95 .0517

Decreased disease network Positively related symptom network Negative score 0.02 .9864 3.19 .0014 0.02 .9828

Decreased disease network Negatively related symptom network Negative score 21.28 .2004 24.15 <.0001 1.33 .1842
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positive symptoms of the disease, although this could not be shown for

the predominantly negative symptoms of the chronic-stage patients.

Our work highlights differences in the functional connectivity

models between those that best classify resting state BOLD signals in

patients relative from a healthy population and those needed to explain

the variance in symptoms in the patient population. For both FES and

CS patients, differences in functional activity in prefrontal cortices con-

tributed prominently descriptions the disease networks. This is consist-

ent with considerable literature suggesting dysfunctional striatal-

prefrontal interactions as core aspects of the functional pathology of

the disease (Howes & Kapur, 2009; Simpson, Kellendonk, & Kandel,

2010). However, a network involving heteromodal temporal cortex and

parietal-occipital regions best explained positive symptom expression

in the first episode cohort.

Relationships between these alternate representations of func-

tional pathology associated with schizophrenia were highlighted in

the bicolor graphs. For FES patients, the two networks intersected

most prominently in middle temporal pole and middle temporal gyrus

(Figure 2c). The left temporal pole previously was proposed as an

important heteromodal hub for recognition and naming (Tranel,

2009) and is the locus of convergence of language streams (Spitsyna,

Warren, Scott, Turkheimer, & Wise, 2006), while the activation in

left middle temporal gyrus is associated with hallucinations (Lennox,

Bert, Park, Jones, & Morris, 1999; Onitsuka et al., 2004). These func-

tionally connected regions also are anatomically connected; the arcu-

ate fasciculus provides a putative structural basis for disease edges

(between interior frontal gyrus and middle temporal gyrus/temporal

pole). Reduced integrity of the arcuate fasciculus is associated with

auditory and verbal hallucinations (McCarthy-Jones, Oestreich, Whit-

ford, & Bank, 2015). Arguing analogously, the inferior longitudinal

fasciculus provides a possible structural basis for the symptom edges

between middle temporal gyrus/temporal pole and lingual/calcarine

gyrus.

The correlations between disease and symptom networks that we

have found are consistent with the hypotheses that the variation in

functional differences between patients and healthy volunteers are

associated for the range of symptom expression in the patient popula-

tion. For FES patients, the disease edges connecting interior frontal

gyrus and middle temporal gyrus/temporal pole correlate negatively

with symptom edges that connect middle temporal gyrus/temporal

pole and lingual/calcarine gyrus (Figure 2c) and these symptom edges,

in turn, correlate negatively with positive symptoms, mainly delusion

and hallucination (Supporting Information, Figure S6). From these rela-

tionships defined between disease edges and positive symptom via

symptom edges (Figure 4a), we predict that increases in specific disease

edge (frontal–temporal connectivities) strengths will lead to more

severe positive symptom. However, further work will be needed to

test the generalizability and predictive utility of these models.

The associations between disease edges associated with inferior

frontal gyrus, symptom edges associated with posterior sensory proc-

essing areas in the occipital and parietal cortex, and positive symptoms

like delusion and hallucination illustrate how these models can suggest

hypotheses regarding causal mechanisms. For example, the anterior–

posterior interactions suggests that prefrontal executive dysfunction

may contribute “top down” to the pathological sensory processing

responsible for positive symptoms in FES (Allen, Laroi, McGuire, & Ale-

man, 2008; Biederman, Glass, & Stacy, 1973). Such a model emphasizes

a central importance for pathological functions of the prefrontal cortex

(Allen et al., 2008; Schmack et al., 2013) in the genesis of perceptual

symptoms and conceptually links the maintenance of delusions with

top–down shaping of brain networks encoding beliefs (Allen et al.,

2008; Schmack et al., 2013).

TABLE 2 Mediation analysis results for the hypothesis that symptom networks mediate the relationship between the disease network and
the positive symptom in first-episode dataset

X M Y a path b path ab path

Z p Z p Z p

Increased disease network Positively related symptom network Positive score 23.89 <.0001 3.95 <.0001 3.95 .0002

Increased disease network Negatively related symptom network Positive score 2.77 .0057 23.66 .0003 22.70 .0068

Decreased disease network Positively related symptom network Positive score 3.46 .0005 4.08 <.0001 3.79 .0002

Decreased disease network Negatively related symptom network Positive score 23.82 <.0001 23.58 .0003 3.94 <.0001

TABLE 3 Mediation analysis results for the hypothesis that symptom networks mediate the relationship between the disease network and
the negative symptom in chronic dataset

X M Y a path b path ab path

Z p Z p Z p

Increased disease network Positively related symptom network Negative score 21.44 .1495 3.18 .0015 21.42 .1562

Increased disease network Negatively related symptom network Negative score 2.30 .0212 23.95 <.0001 21.95 .0517

Decreased disease network Positively related symptom network Negative score 0.02 .9864 3.19 .0014 0.02 .9828

Decreased disease network Negatively related symptom network Negative score 21.28 .2004 24.15 <.0001 1.33 .1842
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For the patients with chronic schizophrenia, formal mediation anal-

ysis did not support a model relating disease and symptom edges and

negative symptom expression directly. Differences in medication and

medication history (or other environmental influences acting on the pri-

mary pathological relationships) in the chronic-stage patients may have

confounded this analysis. Testing this will demand much larger popula-

tions. Nonetheless, it is worth noting that the thalamus, middle frontal

gyrus, hippocampus identified in difference, and symptom networks in

the chronic patients all are modulated functionally by mesocortical

dopaminergic signaling, dysfunction of which has been implicated pre-

viously in negative symptomology (Goff & Evins, 1998). Dopamine, a

potential final common pathway that accounts for the aberrant emo-

tional regulation and psychosis present in the schizophrenic syndrome,

plays an important role in modulating neural regions involved in emo-

tion, cognition, and memory formation (Laviolette, 2007).

Although our work is almost unique because of the particularly

large and homogenous first episode cohort, there are limitations of our

study. First, a more powerful experimental design is to use two inde-

pendent datasets to perform the nested-cross-validation analysis, thus

using one dataset to build the prediction models and another totally

independent one to test the generalizability of the models (Chen et al.,

2016). However, a similarly large, independent population of first epi-

sode patients are not available for us right now. To address this limita-

tion in part, we adopted the permutation analysis (recommend by Shen

et al., 2017 for analysis with cross-validation performed within a single

dataset) to show that our prediction results are significantly better than

random cases. Second, the population of chronic schizophrenic patients

was relatively small and the analysis confounded by potential differen-

ces in any treatment effects. This limited the inferences that could

be drawn by comparisons between results from the two cohorts.

Nonetheless, our work highlighted the heterogeneity amongst patients

with schizophrenia, which was our primary intention, and the need for

their stratification in future studies of this kind. Third, while heuristi-

cally attractive, the bicolor graph approach is still limited by being a vis-

ualization tool, rather than a method for quantitative inference. Future

work needs to integrate graph similarity measures (Zager, 2005) to test

hypotheses regarding relations between disease and symptom edges in

a quantitative framework. Finally, a brain network is composed of two

basic elements: nodes and edges. While different definition of node

(such as different brain templates) and edge (such as sparsity-based

network construction (Yu et al., 2017) may result in different functional

network, our approach can be applied to these networks without fur-

ther adaption. The robustness of our hypothesis should be further

tested under different network construction methods.

Nonetheless, bicolor graphs provide a useful method that can be

applied generally for visualization of relationships between networks,

for example, for exploring relationships between structural and func-

tional disease or symptom edges in schizophrenia. As has been empha-

sized elsewhere recently (Wang & Krystal, 2014), approaches similar to

those used here to define disease edges provide a logical basis for

FIGURE 4 Mediation models we adopted: (a) The unified mediation model. Blue node indicates disease edges, red node indicates symptom
edges and the yellow node indicates the symptom score. If the path a, path b and path a 3 b are all significant, we can conclude that
symptom network mediate the relationship between the disease network and symptom network. (b) The mediation model for the first-
episode schizophrenia dataset. As disease edges can be divided into increased/decreased group, and the symptom edges can be separated
into positively/negatively related group (with positive symptom scores). Thus there are four models corresponding to the four combinations
among increased/decreased disease network, positively/negatively related symptom network and positive symptom score, which are all
tested. (c) The mediation model for chronic schizophrenia dataset. Four models with different combination among increased/decreased dis-
ease network, positively/negatively related symptom network (related with negative symptom scores) and negative symptom score are
tested [Color figure can be viewed at wileyonlinelibrary.com]
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biologically based diagnostic criteria that might prove more predictive

of clinical course than are current, symptom based diagnoses. Our

work also suggests how the brain activity characteristic of disease

(reflected in the disease edges) modulates other areas of the brain for

symptom expression. Definition of robust descriptions of symptom

edges could guide future design of more discriminative scales for meas-

uring symptom severity and change based on more generally defined

relationships between network components and cognitive traits

(Hampshire, Highfield, Parkin, & Owen, 2012). While caution is needed

in making inferences about mechanism from the large-scale network

models, they provide powerful tools for understanding patient hetero-

geneity. Their potential for pathological correlation and quantitative

basis adds to their promise for clinical decision support testing in the

future.
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