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Abstract

The accurate prediction of general neuropsychiatric disorders, on an individual basis, using resting-state functional
magnetic resonance imaging (fMRI) is a challenging task of great clinical significance. Despite the progress to chart the
differences between the healthy controls and patients at the group level, the pattern classification of functional brain
networks across individuals is still less developed. In this paper we identify two novel neuroimaging measures that prove to
be strongly predictive neuroimaging markers in pattern classification between healthy controls and general epileptic
patients. These measures characterize two important aspects of the functional brain network in a quantitative manner: (i)
coordinated operation among spatially distributed brain regions, and (ii) the asymmetry of bilaterally homologous brain
regions, in terms of their global patterns of functional connectivity. This second measure offers a unique understanding of
brain asymmetry at the network level, and, to the best of our knowledge, has not been previously used in pattern
classification of functional brain networks. Using modern pattern-recognition approaches like sparse regression and support
vector machine, we have achieved a cross-validated classification accuracy of 83.9% (specificity: 82.5%; sensitivity: 85%)
across individuals from a large dataset consisting of 180 healthy controls and epileptic patients. We identified significantly
changed functional pathways and subnetworks in epileptic patients that underlie the pathophysiological mechanism of the
impaired cognitive functions. Specifically, we find that the asymmetry of brain operation for epileptic patients is markedly
enhanced in temporal lobe and limbic system, in comparison with healthy individuals. The present study indicates that with
specifically designed informative neuroimaging markers, resting-state fMRI can serve as a most promising tool for clinical
diagnosis, and also shed light onto the physiology behind complex neuropsychiatric disorders. The systematic approaches
we present here are expected to have wider applications in general neuropsychiatric disorders.
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Introduction

Neuropsychiatric disorders, whose rank in frequency is second

only to cardiovascular disease, are widespread all over the world.

A large percentage of the population will experience some type of

neuropsychiatric disorders at some stage in their life. Traditionally,

neuropsychiatric diagnosis is based on a categorical taxonomy

arrived at from clinical observations, and questionnaires developed

with the aid of rating scales. The results have sometimes been

reported to be inconsistent as the questionnaire filled by the

subject tends to be subjective. Over the past decade, clinical

doctors and researchers have become increasingly interested in

finding highly predictive neuroimaging markers that can provide

objective ways to predict and evaluate neuropsychiatric conditions

[1,2]. With the recent advances in functional magnetic resonance

imaging (fMRI), which can provide an unprecedented opportunity

to map large scale brain connectivity [3,4,5,6], it remains an

important problem to know whether resting state fMRI contains

sufficient information to aid the diagnosis of general neuropsychi-

atric disorders. In practice, the advantage of fMRI is its high

spatial resolution, which is beneficial to source location in epilepsy.

In comparison, electroencephalogram, which is widely used in

clinical diagnosis of epilepsy, has a very high temporal resolution

but a limited spatial resolution.

The human brain can be deemed as a large-scale network,

with nodes being distinct brain regions and edges representing

functional connectivity among them. It has been suggested that

many functional brain disorders, such as depression, Alzheimer’s

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36733



disease, schizophrenia and autism can be described as

dysconnectivity syndromes, which are related to the disruption

of the connectivity patterns among spatially distributed regions

of the brain that underlie normal functioning [7,8,9,10].

Recently, a large number of multivariate methods and pattern

recognition approaches [11,12] have been applied to compli-

cated spatial-temporal patterns of fMRI data, with the ultimate

goal of diagnostic classification of various brain disorders,

ranging from depression [7], Alzheimer’s disease [13], attention

deficit hyperactivity disorder [14] to schizophrenia [15].

Most current research on fMRI simply focuses on describing

group differences between subject classes (knowing the label of

each subject) using a relatively small number of subjects. This

cannot classify or predict the brain behavior across individuals.

In this paper, we address the problem of accurately classifying

the brain state (healthy or with neuropsychiatric disorders) on

an individual basis for a large data set. This is generally a

complicated endeavor that must be approached with sensitive

neuroimaging markers and efficient feature-selection methods.

The neuropsychiatric disorder we focus on here is epilepsy,

which is caused by abnormal neural discharge in the cortex.

Epilepsy is one of the most common neuropsychiatric disorders,

affecting about 50 million people in the world [16,17,18].

Traditionally, the amplitude of low frequency fluctuations [19]

and regional homogeneity [20] were used to study the change

in blood-oxygen level dependent (BOLD) signals. Although

these approaches can spot the regional change in the brain,

they ignore the dynamic interactions among the distributed

brain areas. At the network level, the default mode network

(DMN) [21,22] and other networks [23,24] have been found to

demonstrate abnormalities for different kinds of epileptic

patients. Currently, much work was confined to empirically

chosen brain regions or subnetworks, and a global exploration

of the whole functional brain network as well as its application

in individual pattern classification are expect to provide more

information and diagnostic tools [25,26,27]. In this paper, we

proposed two efficient neuroimaging markers at both local and

global level of the functional brain network, which are proved

to be highly sensitive biomarkers in general epilepsy prediction

and can shed lights onto the neuro-pathophysiological mecha-

nism of epilepsy. In particular, we develop a distinct, global

brain asymmetry measure that has not been previously exploited

in brain disorder classification. With the proposed neuroimaging

markers, our goal is to develop a systematic and accurate

pattern classification methodology for large-scale functional

brain network discrimination for epilepsy and possibly other

neuropsychiatric disorders.

Materials and Methods

Participants
There are altogether 80 healthy controls (age: 24.89+8.63) and

100 epileptic patients (age: 23.85+5.66). All subjects are right

handed. The criteria for selection of epileptic patients are that the

patients had unprovoked seizure for more than two times, and had

typical symptoms. The patients enrolled in our study have

different kinds of epilepsy (e.g., temporal lobe epilepsy, partial

and global epilepsy). Statistical tests show that differences in age

between these two groups is not significant (p,0.05). In the patient

group, there are: a) 18 global seizure patients and 70 partial

seizure patients. b) 82 patients use antiepileptic drugs, and 18

without medications. The patients who were treated with anti-

epileptic drugs (AEDs) use valproic acid, phenytoin, carbamaze-

pine and topiramate. Written informed consent was obtained from

all participants. The study was approved by the local medical

ethics committee at Jinling Hospital, Nanjing University School of

Medicine.

Data Acquisition and Preprocessing
All data were collected on a 3 Tesla Siemens Trio Tim scanner

with an eight channel phased array head coil. Resting state fMRI

data were acquired axially by using an echo-planar imaging (EPI)

sequence. The following parameters were used: TR/

TE = 2000 ms/30 ms, FA = 90u, matrix = 64664,

FOV = 24624 cm2, slice thickness = 4 mm, and slice

gap = 0.4mm. A total of 30 slices were used to cover the whole

brain. Each section contained 250 volumes. Subjects were

instructed to relax, hold still, keep their eyes closed without falling

asleep, and think of nothing in particular. Routine anatomical

MRI data were acquired to detect structural abnormality. T1-

weighted image parameters: TR/TE = 350 ms/2.46 ms,

FA = 90u, matrix = 3206256, FOV = 24624 cm2, and slice thick-

ness = 4 mm, slice gap = 0.4 mm, and a total of 30 slices were

acquired. T2-weighted image parameters: TR/TE = 4000 ms/

98 ms, FA = 120u, matrix = 5126307, FOV = 22620 cm2, and

slice thickness = 4 mm, slice gap = 0.4 mm, a total of 30 slices were

acquired. Coronal T2-FLAIR-weighted image parameters: TR/

TE = 7000 ms/87 ms, FA = 150u, matrix = 2566256,

FOV = 24619.5 cm2, and slice thickness = 4 mm, slice

gap = 0 mm, a total of 28 slices were acquired.

We perform data-preprocessing using the software DPARSF.

DPARSF is based on some functions in Statistical Parametric

Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit

(REST), and it has integrated basic preprocessing steps in a

convenient way. First slice-timing adjustment and realignment for

head-motion correction were performed, then we use standard

Montreal Neurological Institute (MNI) template provided by

SPM2 for spatial normalization (resampling voxel size:

3|3|3mm3). After smoothing (FWHM = 8 mm), the BOLD

signals were filtered (band pass, 0.01,0.08 Hz) to remove very

low-frequency drift and high-frequency noises (like cardiac and

respiratory rhythms). The following variables are regressed out as

covariate for each voxel in the data pre-processing: 1. 6 head

motion parameters. 2. Global mean signal. 3. White signal. 4.

Cerebrospinal fluid signal. The registered fMRI time series were

segmented into 116 regions (90 from cortex and 26 from

cerebellum) using the anatomically labeled template by Tzourio-

Mazoyer et al. [28] For each brain region, its representative fMRI

time series, or BOLD signal, is obtained by averaging the fMRI

time series of all voxels in that region. In practice, a component

base noise reduction method [29] can also be applied if noise is

significant. Finally, for each subject, there is a set of 116 BOLD

signals where xi(t) i = 1, 2, …, 116 represents the BOLD signal in

the ith brain region.

The head movements of the subjects can have some effect to

the functional connectivity (e.g., lead to spurious connectivity

[30,31]). Here all the subjects enrolled in our study have very

small head movements (translations,1 mm for all subjects;

rotations,1u for all subject except two patients, and these two

patients’ rotations are smaller than 1.5u), which have been

regressed out in data preprocessing. We have furthermore

performed two sample t-test to the 6 head movement parameters

(a rigid body transformation in 3 dimensions is defined by 6

parameters: 3 translations and 3 rotations) for the healthy

subjects and the epileptic patients, and find that there is no

significant difference between the two groups.

Pattern Classification of Functional Brain Network
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Neuroimaging Marker I: Functional Integration by
Community Matrix K

The functional connectivity of the brain network is usually

measured by cross-correlation between regional BOLD time

series. The functional brain network so obtained, however, can be

quite dense, which usually degrades the performance of pattern

classification approaches. More importantly, the cross-correlation

matrix does not characterize the community structure of the

network explicitly, i.e., whether two brain regions belong to the

same functional cluster or not, a feature that captures coordinated

behavior among distributed brain regions known as functional

integration [32].

To overcome this shortcoming, we propose a novel, adaptive

metric called the community matrix K based on a method known

as k-means clustering [33], which can reflect the community

structure of the brain network in a sparse manner, see Figure 1.

We consider a matrix K whose (i,j) th entry is an estimate of the

probability that the ith and the jth brain region belong to the same

functional community. The basic steps of calculating the

community matrix K are:

1. Initialize k centroids by randomly choosing k data points;

2. Assign each data point to the closest centroid according to the

Euclidean distance Uij = |xi 2 xj|2;

3. For each cluster compute its mean as the new centroid;

4. Repeat Steps 2 and 3 until the centroids no longer move.

For each run of k-means clustering, we get a matrix K with K(i, j)

being 1 only if xi and xj are assigned to the same community and 0

otherwise. By averaging K over L trials (we choose L = 500 so that

the result is stable), we obtain a community matrix K, with K (i,j)

being the probability that the ith and the jth brain region belong to

the same functional community, reflecting the functional integra-

tion of the overall cortex. Here we set the number of clusters to be

relatively large (k = 30) so that K is sparse. This way only those

regions that are highly cooperative will be assigned to the same

cluster. Empirically, K demonstrates consistent connectivity

patterns for k within a large range of values (from 15 to 45), see

Text S1, Figure S1 and Figure S2 for details.

Feature Selection of K via Sparse Regression
The community matrix K has a large dimension: for 90 brain

regions, there would be 90*(9021)/2 = 4005 edges, which can

lead to the ‘‘curse of dimensionality’’ problem in classifier. Usually,

only a small proportion of the pathways in the brain might be

responsible for the dysfunction of the brain network, so, the

effective dimensions in K might be small. Here we use the state-of-

the art feature-selection technique called sparse regression [33] to

extract the key features (i.e., the most discriminative edges) from K.

Sparse modeling is a rapidly developing area at the intersection

of statistics, machine-learning and signal processing. It can expose

highly predictive patterns or signatures, (i.e., a small number of the

most relevant variables in a high-dimensional feature space) and is

most appealing for practical disease marker identification [34,35].

In our case, sparse regression can be used to identify a small

proportion of the edges in the matrix K (which are the key features

in pattern classification), shedding important light onto the

affected functional pathways and brain regions of epileptic

patients.

The details of sparse regression technique can be found in Text

S2. Basically, by formulating the feature matrix of the training set

(each row is a 4005 dimensional feature-vector a from one subject)

and the label of subjects (1 for healthy and 21 for patients) into a

linear regression, sparse regression returns a regression coefficient

vector x (4005 dimensional), each entry of which (the absolute

value) indicates the contribution of the corresponding feature to

discriminating the two groups. It can provide effective feature

selection even when the number of training subjects (90) is much

lower than the number of features (4005). Furthermore, we apply a

random sampling in sparse regression, which can preserve a group

of relevant features that, combined, will possess even higher

discrimination power. This way, the correlation among different

features are taking into full account and utilized, which is superior

to considering each feature separately (such as independent

multiple t-test).

Neuroimaging Marker II: Global Connectivity Asymmetry
of Equivalent Brain Regions

It is well known that the cerebral cortex exhibits marked

structural symmetry across the left and right hemispheres, but is

clearly asymmetrical with regard to function or physiology. The

left hemisphere is normally dominant in language and logical

processing, whereas the right hemisphere is dedicated to spatial

recognition [36,37]. Most work on brain asymmetry focuses on

anatomical structures (such as the morphometric change of cortex)

using modern imaging techniques. The investigation of functional

asymmetry, on the other hand, is traditionally based on cognitive

studies (e.g., handedness and language ability) of patients with

unilateral lesions or split-brain surgery [38]. Generally, there are

few studies of asymmetry measures, based on functional interac-

tions among brain regions [39,40,41]. Furthermore, the exact

characterization of asymmetry of equivalent brain regions in terms

of global, functional connectivity patterns, and its application to

brain disorder classification has not been reported. Here we

propose a new, quantitative, asymmetry index termed global

connectivity asymmetry (GCA) of bilaterally homologous brain

regions, which is expected to provide a more fundamental

characterization of overall left-right asymmetry at the network

level. Since the cortex in each hemisphere is divided into 45

regions, there are 45 pairs of bilaterally homologous brain regions

in the cortex.

The global connectivity asymmetry is defined by the degree of

dis-similarity between the connectivity profiles of two bilaterally

homologous brain regions. The connectivity profile of region i

indicates the global pattern of connectivity of region i to the rest of

cortex, and is defined as the ith row in community matrix K (i.e.,

K(i,:), see Figure 2a). We find that a useful quantitative measure of

the asymmetry between bilaterally homologous brain regions i and

j is 1 minus the correlation coefficient between K(i,:) and K(j,:),

hence we define an asymmetry index as:

r~1{
cov½K(i, : ),K(j, : )�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½K(i, : )�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½K(j, : )�

p :

If two bilaterally homologous regions (i and j) are functionally

connected to the whole cortex in a similar way, then there will be a

large correlation coefficient between K(i,:) and K(j,:), leading to a

small r, indicating a low level of asymmetry. On the contrary, if

region i and j interact with other regions in a very different

manner, this will result in a large r, i.e., a high level of asymmetry.

Basically, r measures asymmetry of two bilaterally homologous

brain regions in terms of their functional interaction and

information transmission to other parts of the brain. Note that r
is 45-dimensional since there are 45 pairs of equivalent brain

regions in the cortex.

Pattern Classification of Functional Brain Network
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Another asymmetry measure we propose is termed the ‘‘pairwise

brain-region synchronization’’ d, which we define also for bilaterally

homologous brain regions as the standardized Euclidean distance

between the corresponding regional BOLD time series, see

Figure 2b. The reason why we use standardized Euclidean

distance (see Text S3 for definition) rather than Euclidean distance

here is to eliminate the nonstationary effect of the time series. The

human brain consists of the left and right hemispheres that are

connected by a bundle of neural fibers called the corpus callosum.

In normal brain function, the two hemispheres work together,

communicating and sharing information across the corpus

callosum. Here d reflects the callosal information transfer in the

brain, and a large d indicates weak synchronization/information

transfer between a pair of bilaterally homologous brain regions,

and therefore stronger asymmetry.

Results

Functional Integration: Community Matrix K
The community matrix K reflects the functional integration

among distributed brain regions in a sparse manner, thereby

serving as a unique ‘‘neuro-signature’’ of the brain state. An

example of the cross-correlation matrix and community matrix K

for a typical healthy control and an epileptic patient is shown in

Figure 1. As can be seen, the connectivity in the former is too

dense to reveal significant difference in functional connectivity

patterns. While for the community matrix which manifests only

the significant pathways among highly cooperative regions, the

difference is more evident. We find that the healthy subjects

demonstrate marked community structure near the main diagonal,

indicating strong coherence in neuro-activities across two hemi-

spheres.

Altered Functional Connectivity Patterns in Epileptic
Patients

Figure 3 demonstrates the group difference between the healthy

subjects and epileptic patient in terms of their community matrix

K. We rank the all the edges in the network according to the

corresponding regression coefficient in sparse regression. A larger

regression coefficient (i.e., whiter pixels) corresponds to edges that

are more discriminative across the two groups. Although the

patient group includes different kinds of epilepsy, a common

feature, as shown in Figure 3a, is that the most discriminative

edges (i.e., whiter pixels) are near the main diagonal, correspond-
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Figure 1. Visualization of Cross-Correlation matrix (a and b) versus Community matrix K (c and d) for the same healthy control (left
column) and epileptic patient (right column). From c and d we can see that the pixels distributed near the main diagonal are much brighter in
healthy subjects than those in patients, as are highlighted by the three boxes, which cannot be observed in cross-correlation matrix (a and b). These
pixels mostly correspond to the functional connections across the two hemispheres.
doi:10.1371/journal.pone.0036733.g001
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ing to functional pathways across the left and right hemispheres.

Specifically, many white pixels lie on the second main diagonal

(Figure 3b), corresponding to functional connectivity between

bilaterally symmetric brain regions (i.e., between region 1 and

region 2, region 3 and region 4,…). To fully understand the

change in neuro-circuitry in epileptic patients, we list the 20 edges

with the largest regression coefficient (absolute value) in Table 1

and categorize them into two kinds: 1. decreased connectivity in

patients (compared to healthy controls), including A) 5 edges from

of bilaterally symmetric regions (heschl, fusiform, temporal-pole-

mid, amygdale and occipital-mid), which indicates that the inter-

hemispheric connection are impaired. B) 4 edges between middle

cingulum and insula (both uni- and bilateral). These connections

are shown to be involved in environmental monitoring and

skeletomotor body orientation [42]. The decrease of these

functional connectivities is going to affect the response selection

and action of the patients. C) 2 edges from super_marginal to

fronal_inf_oper. 2. Increased connectivity in patients (compared to

healthy controls), including D) 3 edges within frontal lobe (among

inferior, middle and superior part) and 1 edge between inferior

and superior parietal lobe; E) 2 edges between cuneus and

calcarine (unilateral). F) 2 edges from subcotical area (amygdale,

insular and caudate). Our finding on both the decreased and

increased functional connectivity indicates that epilepsy is associ-

ated with imbalance of excitatory and inhibitory pathways in the

brain [24].

Finally we summarize these altered functional connections in

terms of the established 6 resting state networks (RSNs) in human

brain, each with specific anatomic pattern and a corresponding

function [43]. We find 1 edges belong to default network, 4 belong

to dorsal attention network, 4 belong to visual network, 1 belong to

auditory network, 1 belong to sensory network, and 2 belong to

the subcortical network. The rest 7 edges are inter-network edges.

From this we can see that the function related to all 6 resting state

networks are affected in epileptic patients (especially in the dorsal

attention network and subcortical network). These altered

functional connections may underlie the pathophysiological

mechanism of the impaired cognition functions of the brain.

Enhanced Asymmetry of Functional Brain Networks
Figure 4a shows the global connectivity asymmetry r for 45

pairs of bilaterally homologous brain regions for all subjects: each

row represents a subject, and each column corresponds to a pair of

brain regions. For a given pair of such regions, we then determine

the average asymmetry of (i) healthy controls (mean value r_H) (ii)

epileptic patients (mean value r_P), and this is summarized by the

ratio r_P/r_H in Figure 4b. Since a large r indicates a higher

level of asymmetry between a pair of equivalent brain regions, a

ratio significantly larger than 1 (i.e., above the red line in Figure 4b)

indicates highly asymmetric brain region connectivities in patients

compared with healthy controls. It may be seen that the

asymmetry of patients increases significantly in multiple brain

regions, with the 10 pairs of most asymmetric regions shown in

Figure 4c. Figure 5 presents the results for pairwise brain-region

synchronization d in a similar manner as Figure 4, and we find that

BB

(a)                                                                        (b)

Bʼ

Aʼ

Bʼ

A Aʼ A
K(A,Aʼ)

d(B,Bʼ)

K(A,Bʼ) K(Aʼ,B)

K(Aʼ,A)

K(A,B) K(Aʼ,Bʼ)

d(A,Aʼ)

Figure 2. Illustration of two asymmetry measures using a pair of equavelent regions A and A’ for demonstration. a global
connectvity asymmetry measure r. The connectivity profile of A (i.e., vetor [K(A,A’), K(A,B’), K(A,B)]) and A’ (vector [i.e., K(A’,A), K(A’,B), K(A’,B’]) are
represented by dashed lines of bule and green, respectively. Note that the connectivity K(A,A’) equals K(A’,A), and are both ploted for clarity. b
pairwise brain-region synchronization d, which is the standardized Euclidean distance between BOLD signals from equavalent brain regions A and A’,
B and B’, respectively (by black dashed lines).
doi:10.1371/journal.pone.0036733.g002
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Figure 3. Visualization of group difference in terms of community matrix K, b is an enlargement of a. The white pixels correspond to
edges in K that are more discriminative across the two groups (these edges have a larger regression coefficient in sparse regression). Specifically, the
second main diagonal (as is indicated by a yellow dashed line in b) contains connectivities between pairs of bilaterally homologous brain regions. In
figure b, the connectivities between brain region 79 and 80 (left and right heschl), 87 and 88 (left and right temporal-pol-mid) are most significant.
Here we highlight most of the discriminative edges in by 5 red boxes, which belong to frontal, limbic, occipital, parietal, and temporal lobe,
respectively.
doi:10.1371/journal.pone.0036733.g003

Table 1 Top 20 links (according to the amplitude of regression coefficient x) among the selected 400 edges in community
matrix K.

Brain Region Brain Region Regression coefficient P value

Cingulum-Mid-L Insula-L +0.8827 2.947 *1e-5

Frontal-Inf-Tri-L Frontal-Inf-Oper-R 20.8447 0.0042

Heschl-R Heschl-L +0.8178 4.0817*1e-8

Cingulum-Mid-R Insula-R +0.8014 4.9377*1e-6

Cingulum-Mid-R Insula-L +0.8009 7.4975*1e-6

Cuneus-R Calcarine-R 20.7683 0.0029

Cingulum-Mid-L Insula-R +0.7503 1.8627*1e-5

Fusiform-R Fusiform-L +0.7421 2.2000e-009

Temporal-Pole-Mid-R Temporal-Pole-Mid-L +0.7257 1.780*11e-7

Frontal-Mid-R Frontal-Sup-Orb-R 20.7012 0.0096

Parietal-Inf-L Parietal-Sup-R 20.6785 0.0020

SupraMarginal-R Frontal-Inf-Oper-R +0.6691 0.0002

Postcentral-R Precentral-R 20.6670 0.0014

Amygdala-R Amygdala-L +0.6665 5.8764*1e-7

Occipital-Mid-R Occipital-Mid-L +0.6434 1.1399*1e-6

Temporal-Inf-R Caudate-R 20.6024 0.0067

Amygdala-R Insula-R 20.5695 0.0002

Frontal-Inf-Orb-R Frontal-Inf-Oper-L 20.5622 0.0061

Cuneus-L Calcarine-L 20.5578 0.0015

SupraMarginal-L Frontal-Inf-Oper-L +0.5462 0.0027

The brain regions that are involved in each of these 20 edges are listed in the first two columns. Among these links, 7 links are from right-hemisphere, 5 are from
symmetric left- and right-hemisphere (bold), 5 are from nonsymmetric left- and right-hemisphere, 3 remaining are from left-hemisphere alone. The 3rd column is the
regression coefficient, with the sign of the group difference (Healthy minus Patient). The 4th column is the P value of the edge by ranksum-test (we use ranksum-test as
the distribution of some of the edges in community matrix K is not Gaussian). We find that 9 edges (in bold) are statistically significant (p = 0.05, ranksum-test, with
Bonferroni correction. Here the single edge threshold is 0.05/650 = 7.69*1e-5, in which 650 is the average number of non-zero edges in K. The number of non-zero
connections is obtained by counting the number of entries in the average community matrix K that are greater than 0.05).
doi:10.1371/journal.pone.0036733.t001
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Figure 4b and Figure 5b demonstrate quite similar patterns,

suggesting these two asymmetry measures r and d are highly

correlated, i.e., a larger d (i.e., weak synchronization) between

symmetric brain regions corresponds to an increased level of

asymmetry.

Classification Accuracy: Distinguish between Healthy
Controls and Epileptic Patients

The next step to neuroimaging markers identification is the

classification, for which we use support vector machine (SVM) as

the classifier [12]. The details of the SVM classifier can be found

in Text S4. First we took 50% of the whole dataset as the training

set for feature selection and SVM classifier training (note that we

are using 50% as training set, which is theoretically more difficult

than using a larger percentage, say 60% or 80% as training set).

To test the generalization performance of SVM, the rest of the

data set, i.e., those not previously presented to the classifier, are

put to the trained SVM using the selected features for cross-

validation. An averaged classification accuracy of 77.6% is

achieved (average over 100 trials) with the selected, most

significant 400 edges in K matrix (we use 400 here; it is stable

with 300 to 600, with the corresponding results shown in Figure

S3). Then we tested how much prediction power the asymmetry

measures r and d possess. For r and d, an average accuracy of

75.5% and 75.8% were obtained, respectively (over 100 trials).

From these results, we can see that the community matrix K and

asymmetry measures are proved to be neuroimaging markers with

highly predictive power. Remarkably, by merging the 45-

dimensional asymmetry feature r with the 400-dimensional

feature selected from K matrix (50% training set), we can achieve

an accuracy of 80.2%. Most prominently, using leave-one-out

prediction (i.e., the classifier was trained on all subjects except for

one and then tested on that out-of-sample individual, and this was

repeated for each individual), the accuracy reaches 83.9%. All

results are summarized in Table 2.

Discussion

Brain Asymmetry in Epileptic Patients
Asymmetry is a fundamental feature of the human brain that

has been shown to be altered in many neuropsychiatric disorders

such as epilepsy [44], schizophrenia [45], and autism [46].

However, many work focus on brain asymmetry in terms of

anatomical change. Currently, there is not much work on the

asymmetry based on global functional connectivity, and little is

known about how neuropsychiatric disorders like epilepsy can
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Figure 4. Asymmetry measure r for 45 pairs of equivalent brain regions a, Visualization of r for all subjects, with each row
corresponding to a subject, and each column represents each pair of equivalent brain regions. The top 80 rows are healthy controls, and
the bottom 100 rows are epileptic patients, separated by a black dashed line. A large r indicates a high level of asymmetry. b, The ratio between
group mean value (r_P/r_H) for each pair of brain regions. The red dashed line corresponds to r_P/r_H = 1, i.e., the two groups have the same group
mean value. The most asymmetric brain region according to r_P/r_H (i.e., amygdale), is highlighted. c, The 10 most discriminative regions across the
two groups according to P value of two sample t-test, with the mean and standard deviation of r being shown for the two groups. The
corresponding P values are (unit: 1023): 0.0002, 0.0017, 0.0027, 0.0031, 0.0234, 0.2620, 0.6166 0.6511, 0.7256, 1.1926. Other significantly changed
regions (P,0.01/45) include Occipital_Inf, Temporal_Sup, Parietal_Inf, Temporal_Mid, Calcarine, and Frontal_Mid. As is shown, r is much larger for
epileptic patients than for healthy controls.
doi:10.1371/journal.pone.0036733.g004
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disrupt the asymmetry of bilaterally homologous brain regions at

the level of functional brain network. From Fig. 4b we can see that

the asymmetry of patients increases significantly in a large number

of symmetric brain regions. In fact for all the 16 regions with

significant difference across two groups (Fig. 4c only shows the

most asymmetric 10 regions), the asymmetry of patients is found to

be larger than that of the healthy controls. We find that the most

different regions across the two groups revealed by asymmetry r
and pair wise brain-region synchronization index d are quite

consistent (see Figure 4b and Figure 5b), and are mainly

distributed in temporal lobe and limbic system (8 regions),

occipital lobe (5 regions), and parietal (1 region) and frontal lobe

(1 region). This result suggests that regions in temporal and limbic

lobes are more likely to be affected in epileptic patients. It is

interesting that both measures rank the amygdala highly. The

amygdala is primarily involved in emotional and social behavior

like fear conditioning and face perception [47], and may be

affected alone or in combination with other regions in temporal

lobe epilepsy. We also note that among the most different 20

functional connectivities across the two groups, the right-

hemisphere is more significant, accounting for 35% of the links

(i.e., 7 links, see Table 1) in contrast to the 3 links that belong to

the left-hemisphere. Our results suggest a potential correlation

between the causes of epilepsy and the asymmetric global

functional connectivity patterns in cerebral cortex, which is a

highly sensitive neuroimaging marker and may shed light onto the

neurologic nature of epilepsy. One reason for the observed

functional asymmetry of the epileptic patients may be due to the

large percentage of partial seizure patients. Since partial seizures

are localized seizures that affect only one side of the brain, the level

of functional asymmetry thus is expected to be higher. Whether

this enhanced asymmetry at the network level is a common

phenomenon for other neuropsychiatric disorders remains an

interesting question.

Conceptually, the two asymmetry measures proposed in the

paper capture different properties of the functional brain network.

The global connectivity asymmetry r depicts the asymmetry of

two bilaterally symmetric brain regions by their global connection

profile; while pairwise brain-region synchronization d only

characterizes the local synchronization between these two regions.

Although the significant regions identified by these two measures

are largely similar, the sensitivity of these two measures is different.

We also find that the correlation between the global and local

asymmetry measure varies with brain regions and across the two

d
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healthy controls, and the bottom 100 rows are epileptic patients, separated by a black dashed line. A large d indicates weak synchronization between
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doi:10.1371/journal.pone.0036733.g005
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groups. It remains an interesting topic to see how these two

measures are correlated.

Influence of Medications
About 90% of the epilepsy patients in the present study are

taking antiepileptic drugs. The drugs function by blocking

sustained repetitive firing in individual neurons. Since the

medications can affect both normal and abnormal regions, thus,

it is possible that the distinct patterns of functional connectivity for

patients may arise from the drugs. To clarify the origin of the

observed difference across the two groups, we performed a cross-

validation with the training set consisting of the patients using

drugs plus the healthy controls (162 subjects), and the test set

includes patients with no medications (18 subjects). We obtained

83.3% accuracy on the test group by SVM classifier using the

same set of features as before, which indicates that there is no

significant difference between patients with and without medica-

tion. We therefore conclude that the difference identified across

two groups is mainly due to epilepsy itself rather than the

antiepileptic drugs.

High-dimensional Features and Pattern Classification
One characteristic of our classification approach is the high

dimensionality of the neuroimaging markers, or features being

adopted: the community matrix K (we select 400 edges in K), and

the asymmetry r (45 dimensional), which characterize local and

global properties of the whole network, respectively. The reason

why such a high dimensional features are needed is due to the fact

that the epileptic patients in our study are large in number and

inevitably involve many different subtypes of epilepsy. Each

different types of epilepsy are characterized by different traits. For

example, epilepsies associated with distinct brain lobes may have

different, altered, functional connections. Therefore the high

classification accuracy in our case (.80%) is possible only when

large number of functional connectivies (i.e., high-dimensional

features) are used. In fact the predictive power is attributed

primarily to the essential features that are not extremely high

dimensional. For example, an averaged accuracy of 73.2% and

75.8% can be achieved, respectively, using 50 most discriminative

edges from the community matrix K and 12 regions selected from

asymmetry measure d, and the second feature seems more

dominant in classification. The advantage of our global-feature

approach is that it could potentially involve features for many

subtypes of epilepsy and a further sub-classification is possible by

simply using part of the features already found.

Here the functional connectivity was measured between each

pair of brain regions comprising the AAL template that is rather

coarse. It has been shown that the resolution of nodal parcellations

can influence network properties [48,49], which in turn may

influence the classification. Theoretically, a higher resolution in

parcellation may provide more spatially-accurate information

regarding the altered functional connectivity. However, since the

number of functional connectivity is about the square of the

number of nodes, a high-resolution template thus can greatly

increase the dimensionality of the problem that can hamper the

performance of classifier. It is therefore reasonable to use a low-

resolution parcellation first (such as the AAL template) to identify

coarsely those brain regions whose functional connectivities have

changed. Based on this a high-resolution parcellation may further

be applied to spot the changes at a small scale. It remains our

future work to use a high-resolution parcellation scheme in the

classification task.

Many publications have reported the significantly changed

functional networks at the group level (i.e., finding group
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difference), which is much simpler than a classification task at

the individual level as we presented here. Usually, in order to

achieve a high accuracy, highly sensitive neuroimaging markers

are needed. For example, suppose there are 56 healthy controls

and 50 patients having a link from temporal-pole-mid (left) to

temporal-pole-mid (right), respectively, for the 180 subjects we

studied. Hence the difference (56/80–50/100 = 20%) is signifi-

cant. However, when it comes to classification using this feature,

the accuracy is only (28+25)/90 = 59% (if 50% are selected as

the test set), which is quite low. This simple example suggests

that to achieve a high accuracy in classification is much harder

than to find significantly changed links, and only those highly-

sensitive features can contribute to a good performance. For

highly heterogeneous data set (like the epileptic data used here

which contains many subtypes), high-dimensional features are

always necessary. Finally, the high accuracy in our classification

here suggests that various types of epilepsy may share common

characteristics: alteration in the pattern of functional integration

among distributed brain regions, and an increase in brain

asymmetry, which are well captured by the proposed commu-

nity matrix K and asymmetry r. Finally it should be mentioned

that the approach proposed in the paper is also of great

relevance to electroencephalogram and magnetoencephalograph

data analysis: our approach can be conveniently applied to such

data. Previous studies in this field have used functional

connectivity analysis as a diagnostic tool in patients suspected

to have epilepsy [50].

Our current approach can be applied to a wider range of

neuropsychiatric disorders such as Alzheimer’s disease, depression,

schizophrenia, ADHD, etc., the diagnosis of which bears more

clinical significance than epilepsy as the syndromes of these brain

disorders are often not obvious especially at an early age. It

remains an interesting question whether the neuroimaging

markers proposed in this paper could be sensitive to other

neuropsychiatric disorders.
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