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Accurate classification or prediction of the brain state across individual subject,
i.e., healthy, or with brain disorders, is generally a more difficult task than merely finding
group differences. The former must be approached with highly informative and sensitive
biomarkers as well as effective pattern classification/feature selection approaches. In
this paper, we propose a systematic methodology to discriminate attention deficit
hyperactivity disorder (ADHD) patients from healthy controls on the individual level.
Multiple neuroimaging markers that are proved to be sensitive features are identified,
which include multiscale characteristics extracted from blood oxygenation level dependent
(BOLD) signals, such as regional homogeneity (ReHo) and amplitude of low-frequency
fluctuations. Functional connectivity derived from Pearson, partial, and spatial correlation
is also utilized to reflect the abnormal patterns of functional integration, or, dysconnectivity
syndromes in the brain. These neuroimaging markers are calculated on either voxel
or regional level. Advanced feature selection approach is then designed, including
a brain-wise association study (BWAS). Using identified features and proper feature
integration, a support vector machine (SVM) classifier can achieve a cross-validated
classification accuracy of 76.15% across individuals from a large dataset consisting of
141 healthy controls and 98 ADHD patients, with the sensitivity being 63.27% and the
specificity being 85.11%. Our results show that the most discriminative features for
classification are primarily associated with the frontal and cerebellar regions. The proposed
methodology is expected to improve clinical diagnosis and evaluation of treatment for
ADHD patient, and to have wider applications in diagnosis of general neuropsychiatric
disorders.
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INTRODUCTION
Attention deficit hyperactivity disorder (ADHD) is characterized
by clinical symptoms of inattention, impulsivity, and hyperac-
tivity. It is one of the most common brain and behavioral dis-
orders among children, which affects 5–8% school age children.
ADHD can frequently persist into adolescence and adulthood
(Biederman, 2004; Barkley, 2006), which can cause significant
functional impairments in the brain (Frances, 1994). A num-
ber of neuroimaging studies have demonstrated the abnormalities
in both structure and function of the brain for ADHD patients
(Seidman et al., 2005; Bassett et al., 2006). Structural abnor-
malities involve reduced volume and cortical thickness found in
frontal, parieto-temporal, cingulate regions, cerebellum, and cor-
pus callosum (Krain and Castellanos, 2006; Shaw et al., 2006;
Mackie et al., 2007; Carmona et al., 2009; Batty et al., 2010; Rubia,
2011). Functional connectivity alterations of ADHD patients
include fronto-parietal (Dickstein et al., 2006), fronto-striatal
(Castellanos et al., 2006), and frontotemporal-parietal network
(Smith et al., 2006), and also anterior cingulate (Tian et al., 2006).

Although there have been extensive studies of ADHD in
terms of widespread brain regions and the connectivity patterns,
relatively less attention are focused on the pattern classification
based on the neuroimaging data of individual ADHD patients,
which is crucial for subjective and accurate clinical diagnosis
of ADHD (Zhu et al., 2008). Compared with identifying differ-
ences at the group level, pattern classification on the individual
level proves to be a more difficult task. It should be approached
with highly sensitive neuroimaging markers, and efficient feature-
selection/pattern recognition approaches (Zhang et al., 2012). As
a specific example, consider the hippocampal volume measure-
ments for individuals in two samples. Suppose a two sample
t-test comparison of the two samples resulted in a significantly
small p-value. Generally, it will be hard to accurately distinguish
(e.g., with 90% accuracy) which sample an individual is drawn
from, because the hippocampal volume of these two samples
may have substantially overlapping distributions. In other words,
finding group difference only requires a p value that is less than a
threshold, while accurately distinguishing the two samples, at the
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individual level, requires that the two samples to be substantially
separated, which requires a highly significant p value. Thus
only highly discriminative features (having extremely significant
p value) can lead to a good performance in classification.

Despite the success in classifying various other brain disorders
such as schizophrenia, Alzheimer’s disease, depression, epilepsy
etc. (Hahn et al., 2011; Liu et al., 2011; Zhang et al., 2011a,b),
the work on classification of ADHD remains limited. Moreover,
most results in the literature are based upon a small population of
patients (in the order of tens) and the obtained results cannot be
fully validated, and hence their clinical significance is still limited.

In this paper, we address the problem of accurately clas-
sifying the brain state (healthy or with ADHD disorders) on
an individual basis for a large data set. In particular, we will
summarize the neuroimaging features that are highly discrimi-
native across the healthy group and the ADHD patients, which
include both local measures such as fractional amplitude of low
frequency fluctuations (fALFF) (Zou et al., 2008) and regional
homogeneity (ReHo) (Zang et al., 2004), and the global char-
acteristics like the functional connectivity derived from various
definitions. A brain-wide association study (BWAS) (Ji et al.,
2012) and feature integration are performed to extract the
most sensitive features, which we found to be closely associ-
ated with the frontal and cerebellar regions. Finally, the correla-
tion between these neuroimaging markers and the ADHD index
is presented.

MATERIALS AND METHODS
PARTICIPANTS AND DATA ACQUISITION
The fMRI data used in this paper are from the ADHD-200
Consortium for the global competition (http://fcon_1000.
projects.nitrc.org/indi/adhd200/). Since the fMRI data collected
from different centers may have some systematic differences
that are possibly caused by the fMRI machine used, in this
paper we only use the fMRI data collected from the Institute
of Mental Health and National Key Laboratory of Cognitive
Neuroscience and Learning (Peking University, Beijing, China)
to minimize variability across institutions. There are 244 chil-
dren, 143 of which are healthy controls (59 females, 84 males;
mean age 11.43 ± 1.86 years; mean index 29.34 ± 6.41), and
the rest 101 are patients with ADHD (10 females, 91 males;
mean age 12.08 ± 2.05 years; mean index 50.43 ± 8.42), includ-
ing 38 ADHD-Combined (ADHD-C) and 63 ADHD-Inattentive
patients (ADHD-I).

All participants (ADHD and controls) are evaluated by the
Schedule of Affective Disorders and Schizophrenia for Children—
Present and Lifetime Version (KSADS-PL) with one parent for
the establishment of the diagnosis. The ADHD Rating Scale
(ADHD-RS) IV is employed to provide dimensional measures
of ADHD symptoms. All subjects are assessed for intelligence
quotients (IQ) on the Wechsler Intelligence Scale for Chinese
Children-Revised (WISCC-R) (mean IQ score 113 ± 14.40), and
for ADHD index on the 18-item version of the ADHD-RS
IV (mean index: 38.31 ± 12.76). Additional inclusion criteria
include: (1) right-handedness, (2) no lifetime history of head
trauma with loss of consciousness, (3) no history of neurologi-
cal disease and no diagnosis of schizophrenia, affective disorder,

pervasive development disorder, and substance abuse, and (4) a
full scale (WISCC-R) score greater than 80.

Five subjects (two healthy controls and three ADHD patients)
showed large head movements (exceeding 3 mm translation or 3◦
rotation) and thus are excluded from our analysis.

DATA PROCESSING
All functional imaging data are acquired using an acronym for
Analysis of Functional NeuroImages (AFNI) and FSL (http://
www.fmrib.ox.ac.uk/fsl/). Before functional image preprocess-
ing, the first four volumes are discarded to allow for scanner stabi-
lization. Briefly, the remaining functional scans are first corrected
for within-scan acquisition time differences between slices, and
are then realigned to the middle volume to correct for inter-scan
head motions. After this the functional scans are spatially nor-
malized to a standard template (Montreal Neurological Institute)
and resampled to 4 mm × 4 mm × 4 mm voxel resolution. After
normalization, the Blood Oxygenation Level Dependent (BOLD)
signal of each voxel is first detrended to abandon linear trend and
then passed through a bandpass filter (0.009 Hz < f < 0.08 Hz)
to reduce low-frequency drift and high-frequency physiological
noise. Finally, nuisance covariates including head motion param-
eters, global mean signals, white matter signals, and cerebrospinal
fluid signals are regressed out. An automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) was used to parcel-
late the brain into 90 regions of interest (ROIs) (45 in each
hemisphere). The names of the ROIs and their corresponding
abbreviations are listed in Table 1. We hereby appreciate what
they, Carlton Chu, Virginia Tech’s ARC, the ADHD-200 consor-
tium, and the Neuro Bureau (http://neurobureau.projects.nitrc.
org/NeuroBureau/Welcome.html), have done for us.

NEUROIMAGING FEATURES
Local features from the functional brain network
Fractional amplitude of low-frequency fluctuation
(fALFF). Amplitude of low-frequency fluctuation (ALFF)
measures the magnitude of the fluctuation of the voxel (Zang
et al., 2007). It reflects the “energy” of the BOLD signal at
each voxel, which is calculated from the power spectrum of the
BOLD time series. fALFF is the ALFF of a given frequency band
expressed as a fraction of the sum of amplitudes across the entire
frequency range in a given signal (Zou et al., 2008), i.e., the
ratio of the power spectrum of low-frequency (0.009–0.08 Hz) to
that of the entire frequency range, which represents the relative
contribution of specific low frequency oscillations to the whole
detectable frequency range.

Regional Homogeneity (ReHo). It is assumed that for a given
voxel, its activity is usually correlated to that of its neighbors, and
ReHo is used to characterize the degree of local synchronization
of spontaneous fMRI signals (e.g., within a cluster) by calculat-
ing the Kendall coefficient of concordance (KCC) (Kendall and
Gibbons, 1990). KCC is defined in a voxel-wise manner as follows
(Zang et al., 2004):

W =

n∑
i=1

(Ri)
2 − n(R̄)2

1
12 K2(n3 − n)
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Table 1 | The names and abbreviations of the regions of interest

(ROIs).

Regions Abbr. Regions Abbr.

Amygdala AMYG Orbitofrontal cortex
(middle)

ORBmid

Angular gyrus ANG Orbitofrontal cortex
(superior)

ORBsup

Anterior cingulate
gyrus

ACG Pallidum PAL

Calcarine cortex CAL Paracentral lobule PCL

Caudate CAU Parahippocampal
gyrus

PHG

Cuneus CUN Postcentral gyrus PoCG

Fusiform gyrus FFG Posterior cingulate
gyrus

PCG

Heschl gyrus HES Precentral gyrus PreCG

Hippocampus HIP Precuneus PCUN

Inferior occipital
gyrus

IOG Putamen PUT

Inferior frontal gyrus
(opercula)

IFGoperc Rectus gyrus REC

Inferior frontal gyrus
(triangular)

IFGtriang Rolandic operculum ROL

Inferior parietal lobule IPL Superior occipital
gyrus

SOG

Inferior temporal
gyrus

ITG Superior frontal gyrus
(dorsal)

SFGdor

Insula INS Superior frontal gyrus
(medial)

SFGmed

Lingual gyrus LING Superior parietal
gyrus

SPG

Middle cingulate
gyrus

MCG Superior temporal
gyrus

STG

Middle occipital
gyrus

MOG Supplementary
motor area

SMA

Middle frontal gyrus MFG Supramarginal gyrus SMG

Middle temporal
gyrus

MTG Temporal pole
(middle)

TPOmid

Olfactory OLF Temporal pole
(superior)

TPOsup

Orbitofrontal cortex
(inferior)

ORBinf Thalamus THA

Orbitofrontal cortex
(medial)

ORBmed

where W is the KCC value of a voxel; n is the number of time
points (here n = 231); Ri is the sum rank of all K voxels at the ith
time point; R = K(n+1)

2 is the mean of the Ri’s; K is the number of
selected neighboring voxels. Here, we select a given voxel together
with its nearest 26 neighbors, that is, K = 27.

Global features from the functional brain network
It has been suggested that many functional brain disease like
Alzheimer’s disease, schizophrenia, and autism can be described
as dysconnectivity syndromes, which is related to the disruption
of the connectivity patterns among the spatially distributed brain

regions that underlie the normal functioning of the brain (Sporns,
2011). The following features are derived from the functional
connectivity by various definitions, for example, Pearson, partial
and spatial correlation.

Functional brain network by Pearson correlation. The most
frequently used functional connectivity measure is the Pearson
correlations between regional BOLD time series, which charac-
terizes the synchronization of the regional activity in terms of the
low frequency fluctuation. Here the Pearson correlation we use is
based on a parcellation of the cortex into 351 brain regions, i.e.,
CC400 atlases in the competition website (http://www.nitrc.org/
plugins/mwiki/index.php/neurobureau:AthenaPipeline) and the
Pearson correlation coefficient between regional BOLD signals is
computed as

rij =

T∑
t=1

[xi(t) − x̄i] · [xj(t) − x̄j]√
T∑

t=1
[xi(t) − x̄i]2 ·

√
T∑

t=1
[xj(t) − x̄j]2

where xi(t) and xj(t) (t = 1, 2, ..., T, T = 231) are the regional
time courses of region i and j with means x̄i and x̄j, respectively.
A Fisher’s r-to-z transform is utilized to convert each correlation
coefficient to satisfy the assumption of normality. The resultant
functional brain network is 351∗351, from which we shall extract
the most sensitive features (i.e., links in the network) that are used
later in the classification.

Functional brain network by partial correlation. The func-
tional connectivity revealed by Pearson correlation may not
reflect the true interaction between a pair of brain regions,
as it does not eliminate the effect from other brain regions
that may exert influence to a pair of brain regions in ques-
tion (Tao et al., 2011). Here we use partial correlation analysis
as a way to reflect the true statistical dependencies between
two regions after removing the confounding effects of all other
regions.

Functional brain networks at the spatial scale. Another kind
of functional connectivity is the spatial connectivity, which is
the similarity of the region-based correlation maps measured by
computing the spatial correlation coefficient (Fox et al., 2006;
Vincent et al., 2007). It is similar to the Pearson correlation,
but instead of computing the correlation across time points, it
computes the correlation across regions. Thus, for correlation
maps corresponding to region i and j,

Rij =

N∑
n=1,n�=i,n�=j

[zi(n) − z̄i] · [zj(n) − z̄j]√
N∑

n=1,n�=i,n�=j
[zi(n) − z̄i]2

√
N∑

n=1,n�=i,n�=j
[zj(n) − z̄j]2

where zi(n) and zj(n)(n = 1, 2...N, n �= i, n �= j, N = 90,) are
the ith and jth columns of the Pearson correlation matrix
obtained above (after Fisher’s transformation) with means being
z̄i and z̄j, respectively. The spatial correlation coefficient between
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FIGURE 1 | Flowchart of the pattern recognition framework proposed.

two brain regions represents the degree of similarity in the global
functional connectivity patterns of the two regions.

PATTERN CLASSIFICATION
Feature selection
In the above section, we have listed all the features that we have
used and all of them are high-dimensional by nature. For exam-
ple, CC400 atlases network contains 61425 (351 × 350/2) links
among different regions of interest (ROIs). For voxel-level fea-
tures such as ReHo and fALFF, the corresponding dimensionality
can be even higher since they are measured at the voxel level. This
high dimensionality in features can lead to the “curse of dimen-
sionality” problem and greatly hamper the performance of the
classifier. To reduce the dimensionality of the feature space, on
one hand, two-sample two tailed t-tests are performed to select
the sensitive features from fALFF, ReHo, Pearson correlation, and

spatial correlation (CC400 atlases), which show significant dif-
ferences between the ADHD and healthy control groups; On the
other hand, a BWAS is performed to select the features from the
functional network derived from partial correlation. In both pro-
cedures, statistically significant features (p-value of two-sample
t-test being smaller than a threshold) are selected. Note that in
each leave-one-out cross-validation (LOOCV) fold, we perform
t-tests only on the training samples to select the discriminative
features.

BWAS approach. Since the distribution of partial correlation is
generally not Gaussian, traditional two-sample z-test cannot be
applied directly. Here we use a BWAS approach to select the signif-
icantly altered functional connections (Ji et al., 2012). We assume
there is one group of subjects suffering from ADHD, and another
group of matched healthy controls. Denote these two groups as
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FIGURE 2 | The altered functional connectivity of ADHD patients

compared to healthy controls. (A,B) Altered functional connectivity in
terms of partial correlation by BWAS approach (p < 0.008, which is also used
in feature selection). Red lines represent significant links that appear more
frequently in ADHD patients while the blue lines are links that appear more

frequently in controls. (C,D) Altered functional connectivity in terms of spatial
correlation (p < 0.008, which is also used in feature selection). Red lines
represent those links that are increased in terms of spatial correlation in
ADHD patients, while blue lines are links that show decreased spatial
correlation in ADHD patients.

P and H respectively and the total numbers of subjects are NP

and NH . We further assume that the whole brain is parcellated
into N regions and a binary matrix is obtained for each sub-
ject with each entry in the matrix representing the existence or
absence of a functional/effective connectivity between the cor-
responding two regions. The task now is to detect those links
that appear with significantly different frequencies in patients and
healthy controls.

For a particular link, assume it appears with probability p in
healthy controls, and q in patients. The score S = p − q then rep-
resents the difference of the occurrence probabilities between the
two groups of subjects. Let ρH and ρP be the proportions of
the healthy controls and patients in a sample with this link. If the
subjects are independent and the sample size is large, according
to the Law of Large Numbers, S can be approximated by the dif-
ference of the proportions ρH − ρP. Furthermore, let LH and LP

denote the number of this link present in the individual net-
works of healthy controls and patients respectively. Then the
independence assumption implies that LH and LP follow bino-
mial distributions B(NP, p) and B(NH , q) respectively. Hence,
if NH and NP are large and p, q are not close to 0 and 1, ρH

and ρP are approximately normally distributed. More specifically,
ρH ∼ N(p, p (1 − p)/NH) and ρP ∼ N(q, q(1 − q)/NP) where
N(μ, σ2) is the normal distribution with mean μ and variance σ2.
In the present study, we did not consider those links with both ρH

and ρP smaller than 0.02 or larger than 0.98 to ensure the validity
of this approximation and at the same time release the burden for

multiple comparisons. Therefore,

ρH − ρP ∼ N(p − q, p(1 − p)/NH + q(1 − q)/NP).

In practice, the score S is estimated from the data as

Ŝ = ρH − ρP = LH/NH − LP/NP.

To assess how differential the link is between two groups of sub-
jects, note that under the null hypothesis that no difference exists,
we have p = q and the density of ρH − ρP is then centered at
zero. Hence, the p-value for an observed score Ŝ can be calculated

as �(−|̂S|/̂σ), where �(·) = 1√
2π

∫ ·
−∞ et2/2dt is the cumulative

distribution function of the standard normal distribution and
σ̂2 = ρ̂H(1 − ρ̂H)/NH + ρ̂P(1 − ρ̂P)/NP . Equivalently, a thresh-
old for |̂S| to claim α-level significance could be specified as
Sth = −σ̂�−1(α). It can be seen that an increase of population
size will reduce the estimated variance σ̂2 and thus increase the
power of the test.

Since the association is tested for a large number of links, a
correction for p-values is needed to account for multiple compar-
isons. In the present study, a false discovery rate (FDR) procedure
is used.

Feature integration
To reduce the dimension of each feature, we integrate each
high dimensional feature by applying a dimensionality reduction
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FIGURE 3 | Comparisons of fALFF between the ADHD patients and healthy controls. T-score bar is shown at the bottom. Warm and cold colors indicate
ADHD-related fALFF increase and decrease, respectively. Threshold is set at p < 0.05 (AlphaSim correction).

FIGURE 4 | ReHo difference map between the ADHD patients and healthy controls. T-score bar is shown at the bottom. Warm and cold colors indicate
ADHD-related ReHo increase and decrease, respectively. Threshold is set at p < 0.05 (AlphaSim correction).
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scheme. For example, for partial correlation network (which is
4005 dimensional), we derive a two dimensional feature by group-
ing the links in the partial correlation network into two sets: one
is composed of links that have a stronger correlation in ADHD
patients than in health controls; and the other is composed of
links with weaker correlation in ADHD patients (i.e., those links
with positive and negative t-score of two-sample t-test imploded
in feature selection, respectively). A two dimensional feature is
then obtained by averaging the links in these two groups, respec-
tively. The feature of spatial correlation is integrated in the same
way. For Pearson correlation network, the principal component
analysis (PCA) (Malhi and Gao, 2004) is used extract the most
useful information. We select the first m principle components
that leads to an m-dimensional feature (here we choose m = 8).
Finally, to extract the key information contained in neuroimaging
markers of fALFF and ReHo. Firstly, a multiple comparison is per-
formed to avoid noise voxels. Then we obtain an averaged ReHo
value using voxels that are significantly increased in the patient
group, which are defined as mean increased ReHo. The mean
decreased fALFF value can be acquired in the same way, which
results in a two-dimensional feature for these two neuroimaging
markers, respectively.

Classifier
The framework of our proposed ADHD classification scheme is
shown in Figure 1. The classifier adopted here is the support vec-
tor machine (SVM) implemented with libsvm version 3.1 (Chang
and Lin, 2011), and the aforementioned features are used to per-
form the classification. We used Gaussian kernel in the SVM
classifier. The kernel width h and the regularization parameter
C in SVM are determined by standard fivefold cross validation
implemented in libsvm software package. In the prediction part,
we applied the leave-one-out cross-validation, i.e., we use a single
subject from the original data as the test data (or validation data),
and the remaining subjects as the training data. This is repeated
such that each subject is used once as the test data. The accuracy of
a classifier is defined as corr/sum, whereas corr denotes the num-
ber of correctly classified subjects, and sum denotes the number
of total subjects. The sensitivity and specificity evaluate the per-
formance of a classifier to identify positive and negative instances,
respectively, and they are defined as below:

Sensitivity = true positives

true positives + false negatives
× 100%

Specificity = true negatives

false positives + true negatives
× 100%

RESULTS
ALTERED FUNCTIONAL CONNECTIVITY
By applying BWAS method, the significantly changed functional
connectivity in terms of the partial correlation are found to dis-
tribute mainly in the frontal lobe and the parietal cortex, see
Figure 2. In the significantly altered 122 links (p < 0.008, which
is also used in feature selection), 33.33% (37/122) links are associ-
ated with frontal cortex and 23.77% (29/122) links are associated
with parietal cortex. It is worthy to note that among these links,

the most significantly altered functional connectivity is the link
between left hippocampus (HIP.L) and left amygdala (AMYG.L)
(p = 2.4e-5) (Plessen et al., 2006). For the functional connectiv-
ity from spatial correlation, the altered links mainly distribute in
the frontal cortex and subcortex. We found that 34.12% (216/633)
and 23.85% (151/633) altered links are associated with these two
areas, respectively. Both measures involve functional connections
related to frontal cortex, which are consistent with previous find-
ings using group comparison methods (Ashtari et al., 2005; Wang
et al., 2009).

fALFF AND ReHo
Since both fALFF and ReHo are computed at the voxel level, we
obtain two brain maps which reflect the abnormalities of “energy”
of the voxels’ activity and the local homogeneity in the ADHD
patients, see Figures 3 and 4, respectively. Here a two-sample
t-test is performed on voxel basis to spot the significantly different
voxels across the two groups; the t-map of each group is cor-
rected for multiple comparisons using the AlphaSim command in
AFNI (Cox, 1996) and a corrected significance level of p < 0.05
is obtained by clusters with a minimum volume of 640 mm3 at
an uncorrected individual voxel height threshold of p < 0.005.
Compared with the healthy controls, the ADHD patients showed
a significant fALFF increase in the bilateral lingual gyrus (LING),
right precentral gyrus (PreCG.R) and left cuneus (CUN.L) and
a decrease in the cerebellum, the bilateral superior frontal gyrus
(SFG) and middle frontal gryus (MFG). Additionally, we also find
many regions showing increased ReHo (labeled in warm color)
in patient group, including the cerebellum, the bilateral LING,
cuneus (CUN), Thalamus (THA), precentral gyrus (PreCG), and
cingulate gyrus; while only a very small portion of voxels show
a decrease in ReHo, including precuneus (PCUN) and medial
frontal gyrus.

PATTERN CLASSIFICATION RESULTS
The flowchart of the pattern recognition framework is shown
in Figure 1. The classification accuracy using this framework is
listed in Table 2. We find that the features from Pearson and
partial correlation of the functional connectivity perform the
best in classification, reaching 70% of accuracy. The scatter plot
using three kinds of functional connectivity (i.e., Pearson, par-
tial and spatial correlation) is shown in Figure 5, from which

Table 2 | Classification results (LOOCV) using different imaging

markers.

Metrics Accuracy (%) Sensitivity (%) Specificity (%)

All features 76.15 63.27 85.11

Partial correlation 71.13 56.12 81.56

CC400 Pearson
correlation

67.78 46.94 82.27

Spatial correlation 63.18 40.82 78.72

Partial corr. +
CC400 corr. +
Spatial corr.

73.22 58.16 83.69

fALFF + ReHo 64.85 48.98 75.89
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FIGURE 5 | Scatter plot of three features after integration, i.e., spatial

correlation, partial correlation, and Pearson correlation (CC400). These
three features are obtained in the following way: taking spatial correlation for

example, we calculate the mean of spatial correlation of those links that have
a stronger and weaker correlation in ADHD patients than in health controls,
respectively, and then take the difference between these two means.

FIGURE 6 | LOOCV prediction accuracy of classifying ADHD patients

from controls with respect to different p-value thresholds in feature

selection. Corresponding sensitivity and specificity are also plotted. It can
be seen that for a wide range of p-value thresholds in selecting features for
SVM, we can achieve more than 70% of accuracy in predictions. The best
accuracy (76.15%) is achieved when p-value threshold is 0.008.

we can see that the features from functional connectivity possess
highly sensitive information to distinguish the healthy controls
and ADHD patients. Other features, such as fALFF and ReHo are
less sensitive, which lead to classification accuracy being about
65%. Since the features from distinct neuroimaging markers such
as functional connectivity, fALFF, and ReHo represent functional
organization of the brain from different aspects, a combination
of all these features in pattern classification results in an overall

accuracy of 76.15%. To test the robustness of our classification, we
evaluate the classification performance with respect to different
threshold (p value) used in features selection, with the results
shown in Figure 6. It can be seen that for a wide range of
thresholds adopted, we can achieve more than 70% accuracy in
predictions. For p-value threshold being 0.008, the accuracy can
reach 76%. Thus the features are more promising in classifying
ADHD patients and controls. It should be noted in Table 2 that
the specificity of our classification is higher that the sensitivity.
The main reason is that the number of healthy controls (141) is
larger than that of ADHD patients (98), which renders the hyper
plane in SVM to be biased that favors the correct classification of
healthy controls.

DISCUSSION
In this paper, we address the problem of accurately classifying
individual state from a large dataset consisting of 141 healthy
children and 98 ADHD patients. Using neuroimaging markers
derived at different scales, such as fALFF, ReHo, and various
kinds of functional connectivity measures, we have identified the
most discriminative features for accurate classification on the
individual level. The frontal and cerebellar regions are found to
change significantly across the two groups, and the correlation
between these neuroimaging markers and the ADHD index is also
presented. Finally, the further improvement, i.e., a multi-modal
approach is discussed to extend our results.

SIGNIFICANTLY CHANGED BRAIN REGIONS IN ADHD
ADHD is characterized by clinical symptoms of inattention,
impulsivity, and hyperactivity, either alone or in combination.
Many neuropsychologists believe the pathophysiology of this
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FIGURE 7 | The correlation between various biomarkers and ADHD

indices. (A,B) The mean decreased Pearson correlation and spatial
correlation show negative correlation with the ADHD index. (C) There

is also a negative correlation between the altered ReHo (the difference
between the mean decreased ReHo and increased ReHo) and the ADHD
index.

disorder may involve dysfunction of frontal–striatal–cerebellar
circuits (Krain and Castellanos, 2006). Moreover, anatomical
imaging studies among ADHD patients are consistently related to
the frontal lobes, basal ganglia, corpus callosum, and cerebellum.
(Jay N. Giedd, Brain Imaging of Attention Deficit/Hyperactivity
Disorder). Summarizing our main results (i.e., significantly
changed brain regions in ADHD patients) from other neuroimag-
ing markers, we note that the frontal lobe and the cerebellum are
among the most relevant regions underlie ADHD patients. The
frontal cortex is known to be involved in multiple aspects such
as planning, working memory, learning, and emotional regula-
tion and it also modulates activity in subcortical structures like
limbic areas, giving rise to the ability to engage in inhibitory con-
trol over behavior (Miller and D’Esposito, 2005; Marsh et al.,
2008). Importantly, frontal lobe are thought to support selective
and divided attention, attention shifting, and executive control,
(Posner and Petersen, 1990; Duncan and Owen, 2000). Our find-
ing of the altered functional connectivity of prefrontal cortex
suggests that children with ADHD may be unable to recruit pre-
frontal regions for control of behavior, including the inhibition
of hyperactivity and the precise motor control. This is consistent
with previous work, which point out that the frontal and cerebel-
lar region abnormalities may contribute to the pathophysiology

of ADHD (Mulder et al., 2008; Mahone et al., 2011; Tomasi and
Volkow, 2011). In terms of structural alteration of the frontal
area, it has been demonstrated that the decrease in frontal lobe
volume in ADHD accounted for 48% of the reduction in total
cerebral volume (Mostofsky et al., 2002). For cerebellum, current
neuropsychological findings implicate that it is not only related
to locating motor movements but is also involved in non-motor
behaviors such as timing and shifting attention through connec-
tions with frontal areas (Allen et al., 1997; Sobel et al., 1998;
Tracy et al., 2000). All the above findings indicate the important
roles of cerebellar and frontal lobe in ADHD. The significantly
changed brain regions identified by our approach may be helpful
in understanding the detailed pathophysiology of ADHD.

CORRELATION BETWEEN IDENTIFIED NEUROIMAGING MARKERS
AND ADHD INDEX
As can be seen in Figure 7, there is a significant association
between the derivatives from various neuroimaging markers of
the ADHD patients and the ADHD index. For the neuroimaging
markers such as ReHo and the functional connections, we first
identify the significantly changed voxels (for ReHo), and the
edges (for the functional connections) using the above mentioned
multiple hypotheses tests. We then divide each high-dimensional
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feature from the patients into two groups: those voxels or
functional connections that are higher or lower than those of
the healthy controls in terms of the neuroimaging marker used,
respectively. For each group, we then calculate the mean value
as an integration of the high-dimensional feature, which we find
to correlate significantly with the ADHD index. From Figure 7,
we can see that for those functional connections and ReHo that
are decreased in the ADHD patients, there is a negative corre-
lation between the sum of the decreased functional connections
(also ReHo) and the ADHD index. These findings suggest the
clinical relevance of the neuroimaging makers adopted in our
study, indicating that the change in the neuroimaging markers in
the patients group are closely related to the severity of ADHD.

TOWARDS AN AUTOMATIC CLASSIFICATION OF ADHD
In the current paper, we have developed a classifier which can
accurately discriminate ADHD patients from healthy controls.

Although we have achieved a relatively high accuracy of
discrimination, we have much space for further improvements.
With BOLD signals, we can include effective networks as further
features (Zou et al., 2009; Luo et al., 2011). The structural MRI
data, which should be informative is not included in the present
study, such as the T1-weighted signals and other modalities such
as diffusion tensor images etc. (Raichle, 2006; Zhang and Raichle,
2010). Furthermore, the information contained in genes and
SNPs should also be valuable for our discrimination. In summary,
to achieve a more reliable diagnosis of various brain disorders,
we have to take up a multi-modal approach that is promising in
accurate classification of brain disorders.
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